Things aren’t so Past Tense

Plot:

“Past Tense” is a two-part episode of Star Trek Deep Space Nine that aired in January 1995. It is noteworthy because it was set now, late August / early September 2024. This was another time travel episode where an accident or alien force teleports the crew into the past. For those of you unfamiliar with the Star Trek franchise, Deep Space Nine is set over 300 years in the future, in a nearly utopian era where humans have overcome tribalism, materialism, ignorance, and all forms of injustice, and reap the benefits of radically advanced technologies. Most people dedicate themselves to the arts, science, family, or the exploration of space.

According to Star Trek’s back story, this condition was only achieved after a series of disasters in the late 20th and 21st centuries convinced humanity that war, capitalism, nationalism, and injustice would lead to extinction. One of those events was the “Bell Riots” of 2024, named after the pivotal figure “Gabriel Bell.” By 2024, the U.S. had become a very unequal and callous society, and it was a matter of federal government policy to imprison unemployed people in walled-off urban ghettoes called “sanctuary districts.”

The San Francisco “sanctuary district”

Whatever initial hopes there were for the sanctuary districts to rehabilitate the underclass were dashed due to underfunding and government ineptitude. The sanctuary districts swelled with people, including criminals and the mentally ill, and the promises to provide them with jobs, medical care and other forms of support were broken. The districts effectively became open-air prisons where undesirable people could be dumped, out of sight and out of mind, so the rest of society could live unbothered. The bad conditions inside the ghettoes were not widely known in the rest of America because people just didn’t care.

In “Past Tense,” three Star Trek crewmen from the year 2371 are visiting San Francisco, which is an idyllic and highly advanced city in their time. However, one of their machines malfunctions and sends them back in time to the San Francisco of 2024. As if that isn’t enough of a problem, they materialize on the eve of a massive riot in one of the city’s sanctuary districts. The two male crewman–“Sisko” and “Bashir”–are mistaken for homeless people, immediately arrested by the police for vagrancy, and imprisoned in that sanctuary district. The female crewman, “Jadzia,” has the luck to run into a tech tycoon who takes her to his penthouse. This way, the viewer sees the extremes of 2024 American society.

Rude awakening

As Sisko and Bashir explore the sanctuary district, we see it’s essentially a big homeless encampment where the residents have been given free reign over several square blocks of the city. Residential townhouses are crowded with people sleeping in the rooms, hallways and stairwells, and the streets are full of tents and crude shelters. The public spaces are full of crowds of people of all ages and types. Everyone looks unhappy, poor and dirty. Stern policemen with shotguns patrol the streets while muggings happen in the alleys. The long breadlines, overloaded government waiting rooms, and mentally ill residents going without medicine attest to the state’s failure to serve the sanctuary district’s needs.

As Sisko remembers from history class, the sanctuary district would soon erupt in a mass riot over these problems. During the mayhem, one group of armed residents seized control of a small government office and took the staff hostage, refusing to release them until all the sanctuary districts were dismantled. One of the hostage-takers, “Gabriel Bell,” used savvy and force of personality to prevent his comrades from killing the hostages at crucial moments during the ordeal. During the heavyhanded government response, National Guard troops raid the office, shooting Bell and several other hostage-takers dead. Hundreds more, many of them unarmed poor people caught in the crossfire, are also killed elsewhere. The high death toll (Sisko describes it as “One of the most violent civil disturbances in American history”) and Bell’s martyrdom shift public opinion in the U.S., and the sanctuary districts are dismantled nationwide.

While Sisko and Bashir initially plan to lay low, stay out of the way, and await rescue during this pivotal event, they are forced into action when Gabriel Bell is stabbed dead while trying to save them from muggers. When the riots start the next day, Sisko–who bears a resemblance to Bell–impersonates him to ensure historical events proceed correctly. Sisko succeeds, though he manages to narrowly escape death because the police gunshot proves nonfatal. Though Star Trek has always avoided explicitly describing how today’s world evolved into a techno-utopia, it’s clear that the Bell Riots was a key event that spurred the U.S. to adopt democratic socialism.

On the occasion of this episodes’ set date arriving, there have been a flurry of internet articles praising its prescience. After rewatching the episodes, I’m skeptical of that, and think they’re getting undue credit from people who like anything that highlight America’s problems. In fact, most of the elements in the show’s fictitious 2024 turned out wrong or depict the same reality that existed in 1995 when the episode aired.

Analysis:

Poor people are forced to live in government-run ghettoes in America. As noted, the sanctuary districts are essentially prisons. The police can force people into them at gunpoint for legal infractions common to the homeless (e.g. – public sleeping, no ID), as Sisko and Bashir were. Another character says some residents willingly agreed to move into the sanctuary districts after the government promised to get them jobs, but when the latter reneged, the people discovered it was impossible to leave. This prediction has failed to pass, and everyone still enjoys freedom of movement within America.

Yes, there is enormous wealth inequality in America. Yes, people geographically sort themselves by income, race and ethnicity (as they do in all countries). Yes, this has led to the formation of impoverished ghettoes in most U.S. cities, where conditions are no better than in the fictious sanctuary districts. However, the crucial difference is no one is stopping anyone from moving out of those ghettoes.

“There’s a law against sleeping in the streets.” The older policeman says this right after waking up Sisko and Bashir at gunpoint. Most cities and states have laws against camping in public places, though the enforcement of them has always varied. A 2018 ruling by the Ninth Circuit Court, which has legal authority over the whole U.S. West Coast, cited humanitarian concerns to forbid any authorities in that zone from enforcing such laws. Unsurprisingly, this led to a visible increase in the number of homeless people and their tents in places like San Francisco, and widespread complaints about their behavior.

In June of 2024, the U.S. Supreme Court overrode that ruling, and city and town level police have resumed ticketing and arresting the homeless. In San Francisco since then, the police have typically been respectful when evicting homeless people from sidewalks and public parks, giving them warnings to leave and then maybe a written citation if they refuse. They don’t deal with the issue by pressing loaded guns to heads of sleeping homeless people to wake them up. Efforts to roll back the homeless presence in West Coast towns and cities are only gradually going into effect, and in many places have not started at all.

Not carrying an ID card is a crime. The other legal violation that lands Sisko and Bashir in the sanctuary district is their failure to produce ID cards. Contrary to myth, it is not actually a crime in any part of America to be in a public area without an ID card. I think this was put in the episode to illustrate how draconian the legal system had become in the alternate 2024.

San Francisco is a very unequal place. Having visited San Francisco recently, I think the episode correctly predicted the level of wealth inequality it has today. Moreover, the best estimate is that there are 8,323 homeless people in the city, which is close to the sanctuary district’s population of 10,000. If you add in people who are not homeless but chronically unemployed and living in squalid conditions, the number of San Franciscans whose lives are comparable to the sanctuary district dwellers is some multiple of 8,323.

At the same time, the city boasts a sizeable upper-class, disproportionately comprised of tech sector workers (the tech tycoon who rescues Jadzia personifies San Francisco’s rich). Twenty percent of the city’s households have annual incomes over $200,000, and millionaires are common. The city is home to the super rich and the super poor.

But before we applaud Star Trek’s ability to predict this state of affairs, keep in mind things were essentially the same in 1994 when the episode’s script was written. For many decades, San Francisco has been an unequal city with an unusually large homeless population due to fair weather, lenient laws, and liberal politics. The share of the city’s population that is homeless might even be the same as it was in 1994 (the statistics are imprecise due to methodological problems counting homeless people). And while it wasn’t as large or as powerful as it is today, San Francisco’s economy had a large tech sector back then. Hewlett-Packard, Intel, and Apple were massively profitable companies whose principal facilities were just outside the city in Silicon Valley.

Unemployment is high. The sanctuary district partly exists because there are so many unemployed people. The female case manager also confirms to Sisko and Bashir that not enough jobs are available for the district’s inhabitants. After taking the Processing Center staff hostage, one of the hostage-takers demands is the reinstatement of the “Federal employment Act.” The episode clearly envisioned a 2024 bedeviled by rampant joblessness. This is wrong: the U.S. unemployment rate is only 4.2% and has been below 5% (widely considered the healthy level) for three years. If you ignore the 18 month spike due to the COVID-19 pandemic, the sub-5% era started in December 2015.

Computers are built into desks. Thankfully, no. Also, did the people who made the episode think about why anyone would want such a setup? Upgrading to a new monitor or PC would be harder if the devices were integrated into a piece of furniture. I don’t even see how this is more ergonomic or space-saving than having your monitor on top of your desk and your PC underneath it, like on a special shelf designed just for that purpose.

There are no cell phones. I didn’t see one in either episode. This is obviously completely wrong. If someone from 1995 stepped through a time portal into San Francisco today, they’d surely be struck by how many people were staring at little screens held a few inches in front of their faces.

City governments are full of incompetence. After the police take Sisko and Bashir to the Processing Center, they sit in a crowded waiting room for three hours before seeing a case manager. Used to the highly competent and well-resourced bureaucracies of the distant future, Bashir becomes outraged. I don’t need to do any kind of research to conclude that incompetence and delays are common features of municipal and local governments. That said, things weren’t much better in 1995, so this depiction of 2024 wasn’t much of a prediction, it was just more of the same.

America uses the Metric system. Wrong.

Cashless payments are common. In the sanctuary district, a government worker gives Sisko and Bashir “ration cards,” which they can use to get free food. They look like credit cards that are scanned or swiped. Jadzia also speaks of receiving “credit chips” after tricking the local authorities into believing she’s someone else and merely lost her ID. We never see paper money in the episodes or hear people speak of it. This depiction of 2024 is mostly accurate.

Sisko receives his ration card

Though America has not gone fully cashless, electronic forms of payment are used for most in-person transactions, and many people can go weeks without having to use cash. Forms of “contactless” electronic payment that use near-field communication (NFC) are common now, and bear no resemblance to anything from 1994. I’m old enough to remember that year and the heavy use of cash and even credit card imprinters, and can say things are definitely different now.

There’s a housing shortage in California. The sanctuary district is visibly overcrowded and Sisko and Bashir have to spend hours walking around the first night looking for a townhome with free space for them. Ultimately, they give up and sleep in an outdoor stairwell. Housing has definitely become unaffordable in 2024, and government housing programs have ridiculously long waiting lists. The problems are particularly bad in California, and San Francisco is now one of the least affordable cities on Earth.

This problem is mostly due to a basic imbalance between supply and demand: the number of dwellings has not increased proportionately with U.S. population growth. Contrary to what you might think after watching “Past Tense,” cruel tycoons and the capitalist system have nothing to do with this: average people and government policy do. Overly restrictive laws and grassroots NIMBY activists have stymied the construction of new dwellings across the country, and the government’s decision to basically open the border has led to a recent surge in the illegal immigrant population, and their presence has helped drive up rents.

There’s a cure for schizophrenia. While wandering the sanctuary district, Bashir spots a man on the street who is clearly in the throes of a schizophrenic episode. Bashir is a doctor and says that a cure for the disease exists in 2024, and the fact that it has not been administered to the man is more proof of how callous American society is. Unfortunately, there still is no cure for schizophrenia. The best we can do is to ease and manage the symptoms with medicines and counseling and to keep schizophrenics surveilled as much as possible. Money is certainly a factor in determining the quality of care a sufferer receives, but because the receptivity to treatments varies across the schizophrenic population, some of them barely improve with even the best treatment.

A party among rich San Franciscans. “Jadzia” is at far left.

There is a new polity in the Caribbean. While rubbing elbows with San Francisco’s rich at a party, courtesy of her rich patron, Jadzia overhears them talking about “the Pan Caribbean government.” It’s unclear whether this is a nation-state or some kind of federation of nation-states. No new countries have been created in the Caribbean since 1994, nor have the borders of any preexisting countries there shifted. During the same period, no new trade blocs or supranational political bodies have formed in the region.

Seafloor mining is about to begin. At the same party, another rich guys says his company has received permission from the Pan Caribbean government to start seafloor mining under their waters soon. This prediction is accurate, so long as the word “soon” is strictly adhered to. Across the world, potential seafloor mining projects are being held up by environmental challenges, but it looks like some of them are finally poised to start.

Europe is falling apart. Star Trek got one thing right: Rich people sure do get around in 2024! At the party they also talk about Europe’s implosion thanks to social and economic disorder. The continent is definitely less stable and more under threat today than it was in the 1990s thanks to demographic decline, mass illegal immigration, Brexit, the rise of far-right, the decline of the strongest economy (Germany), and renewed Russian aggression. However, it goes too far to say “Europe is falling apart.” The E.U. is still the world’s second largest economy, living standards remain high in most ways and are rapidly improving in Eastern Europe, and NATO is still intact and now strengthening to confront Russia.

“The Net” is still a common term. In the episodes, the internet is called “the Net.” Only those of us who remember the 90s will remember this archaic term and fully appreciate how cringey saying it is in 2024.

Videoconferencing is common. While pretending to be Gabriel Bell, Sisko uses a computer inside the Processing Center for a videoconference negotiation with the police chief. This prediction is correct, and video calls are very common in 2024. In fact, the technology we have is more advanced since such calls can be made using handheld devices instead of through large computers built into desks.

Links:

  1. San Francisco has only recently started clearing out its large homeless encampments.
    https://www.kqed.org/news/12006541/sfs-homeless-sweeps-have-cleared-over-1200-tents-where-are-people-going
    https://abc7news.com/post/san-francisco-tenderloin-1-month-after-homeless-encampment-crackdown/15291543/
  2. The 2024 homeless count in San Francisco was 8,323.
    https://hsh.sfgov.org/about/research-and-reports/pit/
  3. Counting homeless people is notoriously error-prone, and there’s reason to believe the homeless share of San Francisco’s population is the same in 2024 as it was in 1994.
    https://darrellowens.substack.com/p/san-francisco-40-years-of-failure
  4. Cash is now used in only 12% of in-store transactions in America.
    https://capitaloneshopping.com/research/cash-vs-credit-card-spending-statistics/
  5. In 2022, 41% of Americans said they routinely went more than a week without using cash.
    https://www.pewresearch.org/short-reads/2022/10/05/more-americans-are-joining-the-cashless-economy/
  6. In 2024, San Francisco was ranked as the eighth least affordable city on Earth.
    https://www.usatoday.com/story/money/2024/06/26/impossibly-unaffordable-housing-cities/74195450007/
  7. Schizophrenia still has no cure.
    https://my.clevelandclinic.org/health/diseases/4568-schizophrenia
  8. After years of false starts, seafloor mining now looks poised to start.
    https://www.scientificamerican.com/article/deep-sea-mining-could-begin-soon-regulated-or-not

“Frontlines: Fuel of War” review

Plot:

It’s the summer of 2024, and the world is in crisis. Twenty years of rising international tensions and competition for dwindling oil have split the strongest countries into two blocs: the Euro-American “Coalition” and the Sino-Russo “Red Star Alliance.” You are the leader of an elite American special forces squad fighting under the banner of the Coalition, and over the course of the video game, you’ll lead your men from the oil fields of Turkmenistan all the way to the heart of Moscow as your side fights to capture the remaining oil reserves and end the Russian threat once and for all. In your missions, you use futuristic guns and drones, and command weapons of war like jeeps, tanks, and helicopters to destroy the enemy. Not even nuclear strikes can stop you. It’s victory…or nothing!

THAT is the awesomest recap of the 2008 first person shooter game Frontlines: Fuel of War that I can muster, and I hope it grabbed your attention because the game actually wasn’t so epic. Putting aside the scarily evocative storyline, it was a paint-by-the-numbers FPS game with generic weapons, the occasional combat vehicle for you to commandeer, and mediocre AI enemies. Anyone who played Halo 2, which was released four years before this, will recognize all the same game elements.

Frontline’s missions are not imaginative and you don’t need any real tactics to beat them: Rely on your ability to absorb inhuman amounts of lead and keep blasting until all the bad guys are dead. The game has Black Hawk Down / Iraq War vibes, which is understandable given the time when it was made. I don’t have a good memory for this, but the graphics were probably above average for 2008. 

Of course, I’m not reviewing Frontlines for its qualities as a video game; instead, I want to examine how well it predicted the future–which is now our present time–16 years ago. For better or worse, video games are a hugely popular medium that shapes global culture and how even our views of what the future will be like. The game is a work of science fiction since it’s set in the then-future and features technologies that didn’t exist yet, and like a typical work of this sort, it’s a time capsule that shows what the anxieties of its moment in history were.

The game was released in February 2008, near the height of an alarming, multi-year spike in the price of oil and only a year after the Iraq War–which some claimed was a secret oil grab perpetrated by U.S. leaders who had insider knowledge that Peak Oil was nigh–hit its bloody climax. Fears were widespread that oil would just keep getting more expensive and that the root cause was a global shortage. In fact, it proved to be a temporary problem caused by Saudi Arabia’s failure to pump more oil out of the ground to keep pace with rising global demand (particularly from China). This led to a temporary imbalance between supply and demand, which caused the 2004-08 global price spike. The U.S. occupation of Iraq also ended without the latter turning into an oil-producing colony of the former. 

It’s important to keep the failures of works like Frontlines: Fuel of War in mind when contemplating how today’s science fiction films, books, TV shows, and games depict the future. The common themes in such recent works are American decline and internal strife (Civil War, The Forever Purge), rise of a fascistic American dictatorship (The Handmaid’s Tale, The Creator), the masses suffering under the cruel yoke of megacorporations and the rich (Snowpiercer), and disastrous climate change (also Snowpiercer). If you take anything away from this essay, let it be a strong skepticism of whatever future doomsday movie or book makes the rounds next.

Analysis:

The world is nearly out of oil. In the game, the world hit “Peak Oil” shortly after 2008 and oil production collapsed over the next few years. By around 2020, oil had become so expensive due to its scarcity that even rich countries like the U.S. were afflicted with chronic electricity, food and water shortages. The in-game reporter character who accompanies the Coalition unit even says at one point that mass riots had become common in U.S. cities, and hundreds would die in the disorder in one night. By 2024, the only remaining oil wells on Earth are in Central Asia, and the world’s major powers are so desperate to control it that they start WWIII over it. Obviously, none of this happened. 

What saved us? Hydraulic fracking, an advanced method of recovering oil from underground deposits, which was pioneered in the U.S. It sharply increased the country’s oil output over the 2010s. By 2018, America was the world’s biggest oil producer, and it has held that title ever since. More than any other factor, the advent of fracking has kept oil cheap globally since 2008. The biggest pie in Frontline’s face is the fact that oil prices are actually much LOWER in 2024 than they were when the game was released, and that Peak Oil DEMAND could happen as early as 2030 thanks to the rise of electric cars and solar power.

But even if global oil production had peaked in 2008, output levels never would have fell as sharply as they did in the game: the collapse was so total that just 16 years later, Turkmenistan was the only country with oil left (in fact, it is actually not even one of the top 10 oil producers in the world today). In reality, the decline would have been much more gradual, and the world would have largely compensated by using more coal and natural gas (and in some countries, greater use of nuclear power). Instead of mass blackouts and nightly, murderous mayhem, America would be swept by mass complaining and people having to make do with slightly smaller houses and cars. Likewise, the world’s major nations wouldn’t be so desperate for energy that they’d be willing to start WWIII with each other to get it.

A pandemic happened in recent memory. Though only spoken of briefly in the game, an avian flu pandemic swept the world in 2009. The game’s narrator was a youth at that time, and he mentions that his parents withdrew him from school because they couldn’t get him a vaccine. This was partly accurate: the COVID-19 virus outbreak started in 2019 and, among its many ill effects, forced closures of schools across the world.

Hospital ward full of people sick with bird flu in 2009

Russia and China have formed a military alliance. The bad guys in the game are the “Red Star Alliance,” a military pact between Russia, China and a few smaller countries that border them. While Russia and China have closer relations than they did in 2008, it owes to shared hostility towards and exclusion by the West and not to any fondness of each other, and there is no mutual defense component to it. 

A Red Star Alliance soldier and the organization’s emblem

China views Russia’s invasion of Ukraine as a mistake and a potential flashpoint for a larger war that China would gain nothing from. As such, China has refused to sell Russia weapons for use in Ukraine, though it has provided large amounts of other goods (microchips, jet engines, etc.) that Russia used to build weapons of its own. Given the different temperaments and strategic priorities of the countries’ leaders, it is highly unlikely they will form a mutual defense arrangement unless there’s a major change to the global order. They don’t want to get dragged into the other’s wars: Russia doesn’t want to fight against Taiwan and China doesn’t want to fight against Ukraine. 

U.S. troops don’t use the M-16 series rifle anymore. The Coalition troops that we see all have American accents and use a smoothly contoured, plasticky rifle that resembles the aborted “XM-8.” This means the U.S. military has abandoned the M-16 series as its standard rifle. This hasn’t happened, and the XM-8 was canceled before entering service because, though it was slightly better than the M-16 series in some ways, the advantage was not so great that it justified the cost of replacing millions of the older rifles. 

An American soldier circa 2024, with futuristic rifle, holographic eyepiece, but strangely no e-cigarette.

There are now plans to replace the M-16 series with a heavier, more powerful rifle called the “XM-7,” but I’m skeptical the plan will be carried to completion and instead expect it will find a role as a specialist weapon. 

All infantrymen, including the Russians and Chinese, have holographic eyepieces. Every soldier seen in the game has a square, holographic eyepiece jutting down from the bottom of his helmet rim and over one eye. Coalition eyepieces glow blue while Red Star eyepieces glow red, presumably because the two sides have an agreement to differentiate themselves according to who is good or evil. It’s unclear what the eyepieces display over their wearers’ fields of vision, though a fair guess would be the overhead battlefield map with objectives and enemy positions highlighted that the player sees at the top of the screen.  

A U.S. Army unit testing Microsoft Hololens augmented reality goggles meant for soldiering tasks in late 2023
A Ukrainian drone operator, 2024

While augmented reality eyewear keeps making appearances at military trade shows across the world, and all modern militaries have some program dedicated to evaluating them, they are not in common field use. A notable exception to this is short-range drone pilots, many of whom wear virtual reality goggles to remotely fly their craft. However, they don’t wear those goggles when engaged in rifle combat with the enemy like in the game. 

View through a U.S. military-standard EO Tech red dot rifle scope

Rifle scopes are much more common and more advanced than they were in 2008, and duplicate one aspect of the game’s eyepieces: when looked through, the scopes show glowing reticles over the shooter’s field of view, indicating where their bullets will hit. This makes target acquisition faster and more accurate, and the scopes have become standard equipment in several major militaries. In that sense, “augmented” or “holographic” visioning devices are common on the battlefield in 2024.

There are hand-launched attack drones. In the game, you can launch handheld, hovering drones that you then remotely pilot to enemy targets whereupon you detonate them. They are small enough to fly through open windows and hallways and are best suited for attacking fortified positions like machine gun pillboxes. A drone’s explosive load is about the same a grenade. This is probably the game’s most important and prescient prediction about 2024.

The Ukraine War has seen mass use of drones by both sides. This includes countless, small quadcopter drones that closely resemble those in the game. Some are kamikazes that are sacrificed upon use while others are reusable and drop mini-bombs. They’re so effective and cheap that they’re commonly used to hunt down lone infantrymen and don’t have to be reserved just for valuable targets like tanks. If anything, the game UNDERestimated how pervasive and transformative aerial drones would be on the 2024 battlefield.

There are small ground drones. However, the game’s prediction that small ground drones would be in common use has failed for several reasons. First, small vehicles with little wheels and low ground clearances can’t negotiate the uneven terrain found on typical battlefields: a barbed wire fence, log, or pile of rubble that a human could easily step over could be an impassable barrier to mini-tank the size of a coffee table. Sizing them up to overcome these issues results in them no longer being small enough for infantrymen to carry into the field. Second, since ground vehicles move slowly and basically in just two dimensions, they’re easy targets for enemy troops (contrast this with aerial drones, which can move fast and in three dimensions). This means they’re less survivable and might need some kind of armor, adding to their cost and bulk. Third, small ground drones are expensive because they require more material for their manufacture than flying drones. Above a certain unit price point, it doesn’t make sense to use them sacrificially like you can with aerial drones.

There’s a particularly unrealistic moment in the game where you use a skateboard-sized, remote controlled suicide drone to drive under an enemy tank and blow it up. Again, this would only work if the route to the tank were over flat, hard ground with no debris in the way, which you would never count on being the case in combat. The real 2024 solution would be to use a shoulder-launched missile or a small aerial kamikaze drone loaded with a shaped charge explosive. Those missiles and drones can also target the thin armor on the top sides of tanks, which is almost as vulnerable as the belly armor that a skateboard drone’s explosion would tear into.

A legged robot with the same speed, agility, size, and balance as a dog could be a potent weapon of war

That said, future advances in robotics will eventually fix the problem: small ground robots with legs instead of wheels would be able to quickly negotiate difficult terrain and attack other ground targets. This draws inspiration from history: during WWII, both sides experimented with bomb-laden dogs that were trained to run across the battlefield, dive under enemy tanks and then explode. While the dogs were fast and nimble enough to do it, problems like the animals being spooked by gunfire foiled its viability. It will surely take decades, but dog-like robots will become a reality, and I’m sure they’ll have combat niches, but can’t say whether they will be preferred to other kinds of futuristic weapons for specific tasks like destroying tanks.

Russian troops are bad at fighting. From the start of the game, in every mission where you fight Russia, you do nothing but drive them back. For a country with such a fearsome reputation, this seems paradoxical, but it actually isn’t: The ongoing Ukraine War, the first Chechen War, the first year of WWII, and the Russo-Finnish War bear out the fact that the Red Army fights poorly (sometimes disastrously so) when the stars align in the wrong way. Though Russians are more courageous and brutal than average on the battlefield and have great skill improvising, poor training, bad leadership, and supply shortages perennially undermine their overall performance. The problem gets worse when the war involves a place and an objective that average Russians don’t care about. 

Russian POWs in Ukraine, 2022

Russia’s military reputation has taken a major hit due to its poor performance in Ukraine since 2022: appalling losses have forced it to fall back on antiquated weapons drawn from Soviet stockpiles and on convict troops and paid foreign mercenaries. The Russians have made strategic blunders, and on the battlefield rely on uncreative tactics (mostly wearing down the Ukrainians with mass artillery strikes and frontal attacks with infantry). Aside from their tenacity, there’s little to be impressed with, and in a direct conventional war with U.S. troops like the “Coalition” team you lead in the game, the Russians would badly lose in peripheral places like Central Asia. However, they would fight much harder inside Russia itself, as it is their sacred homeland. 

Russia used nuclear weapons to defend itself from land invasion. After beating up the Russians in Central Asia, the Coalition decides to keep going with a land invasion across the Kazakhstan border into Russia itself, with the objective of conquering the latter. This makes little sense since the Coalition had already accomplished its goal of capturing the last remaining oil well in the world, and since an organization composed of democratic Western governments would never behave so recklessly. The response is predictable: Russia launches nuclear missiles against the Coalition armored force, causing major damage to it. (That mission is the most stunning in the game as it involves you fighting a tank battle punctuated by nearby nuclear explosions)

Thankfully, no one has tried invading Russia since 1941, so it has never used nuclear weapons in self-defense. And let there be no doubt they would: Russia clearly states in its defense doctrine that it will use nuclear weapons if its territory is threatened. The game’s depiction of how this would play out is accurate: Instead of launching an all-out nuclear attack against all Coalition’s cities, Russia started by only using smaller, tactical nuclear weapons against the Coalition’s military forces that were crossing the border, and in a remote area with few or no civilians. This wasn’t mentioned in the game, but it would surely be preceded by top-level warnings from Russia to the Coalition governments about what was coming. 

I think Russia, the U.S., and China are the world’s three “unconquerable countries” because of their sheer size and nuclear arsenals. The armies of other countries might be able to defeat them on foreign soil, but it would be hopeless to invade any of the three in an attempt to take them over since too many troops would be needed and they have enough nuclear weapons to annihilate any attacker. The final mission of the game is the storming of downtown Moscow, and in it, mushroom clouds are visible in the distance, meaning Russia has been using nuclear weapons against Coalition troop concentrations during their travels through its territory. I can’t fathom how any army could survive repeated nuclear attacks like that, nor do I see how the home fronts in the Coalition countries would avoid falling into chaos over widespread panic that Russia would nuke them at any moment as well.

Big tank battles are happening in Europe. As mentioned, the Coalition invasion of Russia is spearheaded by a large number of tanks. In the first invasion mission and subsequent ones set deeper in Russia, there are instances where your character must command a tank and fight with Russian tanks. To the surprise of people in 2008, this turned out to be accurate. 

The Ukraine War has seen many tank battles since 2022, with a series of particularly large ones happening in early 2024 for control of the town of Avdiivka. Up to this point in the War, 17,168 of Russia’s armored vehicles have been destroyed and 2,925 captured by Ukraine.

China has conquered Taiwan. The game focuses on the European theater of the war, so almost all of the combat is against Russian troops. Midway through the game, it is mentioned that China invaded and quickly took over Taiwan. Thankfully, this didn’t happen, so Frontlines: Fuel of War can be added to the enormous trash heap of sources that have wrongly predicted such an invasion since at least the 1980s. Additionally, the insinuation that Chinese ground troops could easily take over the island is almost certainly wrong: while China’s army is massive, its amphibious forces are small, which creates a major bottleneck for getting its troops across the Taiwan Strait and providing them with supplies.

U.S. attack subs lurking underwater and long-range antiship missiles fired from Taiwan and by U.S. warplanes might fatally damage a Chinese landing fleet before it reached the beaches. More generally, marshalling a naval fleet for a D-Day scale invasion is sure to be an extremely risky and high-casualty endeavor in today’s age of 24/7 spy satellite surveillance and long-range precision missiles. While the world has been primed to expect a future Chinese invasion of Taiwan to be an inevitable and unstoppable juggernaut, it could actually be the most legendary naval defeat since the loss of the Spanish Armada.

Links:

  1. Fracking sharply boosted U.S. oil production starting in the 2000s.
    https://www.eia.gov/todayinenergy/detail.php?id=25372
  2. Thanks to fracking, the U.S. has been the world’s biggest oil producer since 2018.
    https://www.eia.gov/todayinenergy/detail.php?id=37053
  3. Peak Oil Demand could come as early as 2030.
    https://www.iea.org/news/slowing-demand-growth-and-surging-supply-put-global-oil-markets-on-course-for-major-surplus-this-decade
  4. In WWII, both sides experimented with using bomb-laden dogs to blow up enemy tanks.
    https://en.wikipedia.org/wiki/Anti-tank_dog
  5. In the Ukraine War, ground drones have proven far less effective than flying drones.
    https://www.rferl.org/a/ground-drones-war-russia-invasion-ukraine/32911118.html
  6. The U.S. Army is experimenting with battlefield applications of augmented reality goggles, but the devices aren’t close to being approved for common use.
    https://www.gizchina.com/2023/09/14/us-army-orders-more-microsoft-ar-glasses-as-new-version-works-well/
  7. ‘In One Brutal Tank Battle Outside Avdiivka, The Russians Lost As Many As 21 Tanks. The Ukrainians Lost Two.’
    https://www.forbes.com/sites/davidaxe/2023/12/28/in-one-massive-tank-battle-outside-avdiivka-the-russians-lost-as-many-as-21-tanks-the-ukrainians-lost-two/

What my broken down car taught me about the future

When I was in college, my mother bought me a new, cheap car for my 21st birthday. It lasted me for 19 years and 209,000 miles–my companion through two or three chapters of my life–before finally dying of a seized engine last month. Finding a replacement in a hurry plunged me headlong into the world of cars, and a side effect of all the research and car inspections I did before buying a new one was an understanding of how future technology will revolutionize cars and the industries related to them.

Better designs

My old car was a Chevrolet Cobalt. Over the years, I’d learned a lot about it from working on it in my driveway, so it was sensible for me to consider buying a new one, but the model was discontinued in 2010. That led me to consider its successor, the Cruze, which I assumed would share many design elements with the Cobalt. 

The engine bay of a Chevrolet Cruze

Unfortunately, I discovered the Cruze has an average-at-best reputation among compact cars thanks to problems with its engine and some of the components directly attached to it. The use of lower-quality components was the main culprit, and there was also a case to be made that some aspects of the engine design itself were not as well thought-out as they should have been. 

I bet GM’s engineers didn’t know about these problems, or at least didn’t know they would turn out to be so pronounced, until after a million Cruzes had been sold and at least two years had passed so the problems could be exposed through real-world driving conditions. I also doubt the problems would have arisen at all had those engineers had access to the kinds of advanced computer simulations we’ll have in the future. 

Using hyper accurate, 1:1 simulations of materials and physical laws, car designers could test out unfathomably large numbers of potential car designs and experiment with different components and combinations of components until optima were found given parameters like maximum cost and minimum performance. Each simulated car could be “driven” for a million miles under conditions identical to those in the real world, thus revealing any design or material deficiencies before any vehicle was actually built. (These kinds of simulations already exist, but are so expensive to create that they’re only used to model things like nuclear weapons and stealth bombers.)

Thanks to this, cars in the future will be better and more reliable than they are today, and there won’t be such things as specific car models like the Cruze that have bad reputations for unforeseen problems. All vehicles will be optimized and all car companies will use the same tools for designing their products (which I also imagine would lead to many convergences). 

More diligent maintenance

With the Chevy Cruze out of the equation, I considered another compact car, the Nissan Versa. My research quickly led me to discover that Nissan cars have become infamous among owners and mechanics for transmission failures. This is because most Nissans have “continuously variable transmissions” (CVTs) instead of traditional 6-speed automatic transmissions or 5-speed manual transmissions. 

CVTs are cheaper to manufacture than the traditional transmissions and improve the fuel efficiency of the cars they are integrated into. However, CVTs require more maintenance because they get hotter during operation and produce more metal particle debris due to more metal-on-metal contact between moving parts. Replacing the transmission fluid and filter largely solves the problem and should be done every 30,000 miles in a Nissan car with a CVT. 

Old transmission fluid draining out of a car

To put this into perspective, a 2013 Toyota Corolla with a 5-speed automatic transmission only needs the same transmission service every 100,000 miles. Most car owners still expect that kind of maintenance interval in all new vehicles, and this mismatch between expectation and reality explains most of the Nissan Versa’s bad reputation. It doesn’t help that Nissan itself has downplayed the higher maintenance requirements of its CVT vehicles, or that the kinds of cash-strapped people who buy Versas tend to know little about cars or how to take care of them. 

More broadly speaking, improper maintenance is something that car mechanics constantly complain about (even if it generates a huge amount of business for them). Most cars die prematurely due to owners ignoring obvious problems and not properly maintaining them. Some “bad” cars like the Versa aren’t actually bad, they just need more maintenance than others to stay functional. However, learning about this through research and then staying mindful of your particular vehicle’s maintenance requirements is too much for most human car owners thanks to a lack of time, energy, and sometimes intelligence. 

Intelligent machines won’t have those same limitations. Future cars will have better self-diagnostic capabilities, and will be maintained by robots that will never skip preventative care. And since machines will work for free unlike today’s human mechanics, the costs of this will be much lower. Even poor people will have enough money to change the transmission fluid in their Nissan Versas. 

Gentler driving

Facebook Marketplace was my primary source for my used car search. In a huge fraction of the ads, the owners wrote their cars had “Salvaged titles” or “Rebuilt titles.” That means the car sustained so much damage that its insurer declared it “totaled,” meaning the cost of fixing it exceeded the resale value of the car in its state. Instead of being scrapped, many cars like this are bought at very low prices by mechanics who fix them themselves and resell them for a profit. Those profits tend to be small because having a Salvaged or Rebuilt title is a scarlet letter in the open market because buyers know such a vehicle was badly damaged at some point, and can’t be sure of the full extent of the problem or of how fully it was remedied. I ignored all the cars without clean titles. 

Why do cars end up with Salvaged or Rebuilt titles? Mostly because they were in serious accidents, floods, or caught on fire. Autonomous vehicles will, once fully developed, drive much more safely than humans and get into far fewer accidents. Eventually, they probably won’t even have steering wheels or pedals, making car thefts and ruinous joyrides impossible. 

As I discussed in my blog Hurricane Harvey and Asimov’s Laws of Robotics, autonomous cars could also avoid floods by keeping watch of their surroundings and driving to higher ground if they were at risk of being submerged. Better monitoring systems would also reduce instances of car fires since the cars would be able to shut down their systems if they sensed they were overheating, or to immediately call the local fire department if they caught on fire. 

More careful driving and avoidance of other hazards will sharply lower the odds of a car having to worry about getting a Salvaged or Rebuilt title. Gentler driving that stayed mindful of the car’s engineering limits and avoided exceeding them would also lengthen vehicle lifespans since components would take longer to wear out. 

Conclusion

In the future, vehicles will drive safer and will last much longer than they do today. They will be designed better and will incorporate more advanced materials like future alloys. Moreover, once battery technology reaches a certain threshold, the vehicle fleet will transform to almost 100% electric in a few decades, and electric vehicles are inherently more robust than gas and diesel vehicles we’re used to because they have fewer parts and systems. 

On a longer timeframe, autonomous driving technology will achieve the same performance as good human drivers, and the average vehicle will become self-driving. Machines will drive much more safely and gently than humans, making it much rarer for cars to be damaged in accidents or by driving behavior that overstresses their components. 

Future technology will also benefit car maintenance. The vehicles themselves will have better inbuilt self-diagnostic capabilities, so they’ll be able to recognize when something is wrong with them and to alert their owners. The proliferation of robot workers of all kinds will also lower the costs of maintaining cars, meaning it will not be so common for owners to skip maintenance due to lack of money. The robot butler who hangs around at your house could work on your car in your driveway for free, or your car could drive itself to a repair shop where machines would service it for low cost. 

Under all these conditions, the average car’s lifespan will be over 500,000 miles in the future (today, it’s about 200,000 miles), being stranded because your car broke down will be much rarer, and personal vehicle transportation will be within the means of poorer people than today. Ultimately, cars might only get totaled due to unavoidable freak accidents, like trees suddenly snapping in the wind and smashing down on one of them, or to deliberate vandalism by humans. Likewise, after humans discover the technologies for medical immortality, we’ll only die from accidents, murder and suicide.  

These technology trends will also upend the used car industry. With machines carefully doing and logging all the daily driving and maintenance, secondhand buyers won’t have to worry that the vehicles they’re looking at have secret problems. With highly accurate data on each car’s condition, haggling would disappear and pricing would reflect the honest value of a used vehicle. 

People in the used car industry who make a living off of information asymmetries (the worst example is a car auctioneer who only lets potential buyers examine a car for a few minutes before deciding whether to buy it) would lose their jobs. In fact, AI and autonomous vehicles would let car manufacturers, fleet owners like rental car companies, and private owners sell their vehicles directly to end users without having to go through any middlemen at all. AIs that work for free would replace human dealers and would talk directly with customers who wanted to buy cars. A personal inspection and test drive could be easily arranged by sending the autonomous car they were interested in to the buyer’s home, no visit to the car lot needed. 

My future predictions (2024 iteration)

If it’s January, it means it’s time for me to update my big list of future predictions! I used the 2023 version of this document as a template, and made edits to it as needed. For the sake of transparency, I’ve indicated recently added content by bolding it, and have indicated deleted or moved content with strikethrough.

Like any futurist worth his salt, I’m going to put my credibility on the line by publishing a list of my future predictions. I won’t modify or delete this particular blog entry once it is published, and if my thinking about anything on the list changes, I’ll instead create a new, revised blog entry. Furthermore, as the deadlines for my predictions pass, I’ll reexamine them.

I’ve broken down my predictions by the decade. Any prediction listed under a specific decade will happen by the end of that decade, unless I specify some other date (e.g. – “X will happen early in this decade.”).

2020s

  • Better, cheaper solar panels and batteries (for grid power storage and cars) will make clean energy as cheap and as reliable as fossil fuel power for entire regions of the world, including some temperate zones. As cost “tipping points” are reached, it will make financial sense for tens of millions of private homeowners and electricity utility companies to install solar panels on their rooftops and on ground arrays, respectively. This will be the case even after government clean energy subsidies are inevitably retracted. However, a 100% transition to clean energy won’t finish in rich countries until the middle of the century, and poor countries will use dirty energy well into the second half of the century.
  • Fracking and the exploitation of tar sands in the U.S. and Canada will together ensure growth in global oil production until around 2030, at which time the installed base of clean energy and batteries will be big enough to take up the slack. There will be no global energy crisis.
  • This will be a bad decade for Russia as its overall population shrinks, its dependency ratio rises, and as low fossil fuel prices and sanctions keep hurting its economy. Russia will fall farther behind the U.S., China, and other leading countries in terms of economic, military, and technological might.
  • China’s GDP will surpass America’s, India’s population will surpass China’s, and China will never claim the glorious title of being both the richest and most populous country.
  • Improvements to smartphone cameras, mirrorless cameras, and perhaps light-field cameras will make D-SLRs obsolete. 
  • Augmented reality (AR) glasses that are much cheaper and better than the original Google Glass will make their market debuts and will find success in niche applications. Some will grant wearers superhuman visual abilities in the forms of zoom-in and night vision.
  • Virtual reality (VR) gaming will go mainstream as the devices get better and cheaper. It will stop being the sole domain of hardcore gamers willing to spend over $1,000 on hardware.
  • Vastly improved VR goggles with better graphics and no need to be plugged into desktop PCs will hit the market. They won’t display perfectly lifelike footage, but they will be much better than what we have today, and portable. 
  • “Full-immersion” audiovisual VR will be commercially available by the end of the decade. These VR devices will be capable of displaying video that is visually indistinguishable from real reality: They will have display resolutions (at least 60 pixels per degree of field of view), refresh rates, head tracking sensitivities, and wide fields of view (210 degrees wide by 150 degrees high) that together deliver a visual experience that matches or exceeds the limits of human vision. These high-end goggles won’t be truly “portable” devices because their high processing and energy requirements will probably make them bulky, give them only a few hours of battery life (or maybe none at all), or even require them to be plugged into another computer. Moreover, the tactile, olfactory, and physical movement/interaction aspects of the experience will remain underdeveloped.
  • “Deepfake” pornography will reach new levels of sophistication and perversion as it becomes possible to seamlessly graft the heads of real people onto still photos and videos of nude bodies that closely match the physiques of the actual people. New technology for doing this will let amateurs make high-quality deepfakes, meaning any person could be targeted. It will even become possible to wear AR glasses that interpolate nude, virtual bodies over the bodies real people in the wearer’s field of view to provide a sort of fake “X-ray-vision.” The AR glasses could also be used to apply other types of visual filters that degraded real people within the field of view.
  • “Smart home”/”Wired home” technology will become mature and widespread in developed countries.
  • Video gaming will dispense with physical media, and games will be completely streamed from the internet or digitally downloaded. Business that exist just to sell game discs (Gamestop) will shut down.
  • Instead of a typical home entertainment system having a whole bunch of media discs, different media players and cable boxes, there will be one small, multipurpose box that, among other things, boosts WiFi to ensure the TV and all nearby devices can get signals at multi-Gb/s speeds.
  • Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language.
  • Self-driving vehicles will start hitting the roads in large numbers in rich countries. The vehicles won’t drive as efficiently as humans (a lot of hesitation and slowing down for little or no reason), but they’ll be as safe as human drivers. Long-haul trucks that ply simple highway routes will be the first category of vehicles to be fully automated. The transition will be heralded by a big company like Wal-Mart buying 5,000 self-driving tractor trailers to move goods between its distribution centers and stores. Last-mile delivery–involving weaving through side streets, cities and neighborhoods, and physically carrying packages to peoples’ doors–won’t be automated until after this decade. Self-driving, privately owned passenger cars will stay few in number and will be owned by technophiles, rich people, and taxi cab companies.
  • Thanks to improvements in battery energy density and cost, and in fast-charging technology, electric cars will become cost-competitive with gas-powered cars this decade without government subsidies, leading to their rapid adoption. Electric cars are mechanically simpler and more reliable than gas-powered ones, which will hurt the car repair industry. Many gas stations will also go bankrupt or convert to fast charging stations.
  • Quality of life for people living and working in cities and near highways will improve as more drivers switch to quieter, emissionless electric vehicles. The noise reduction will be greatest in cities and suburbs where traffic moves slowly: https://cleantechnica.com/2016/06/05/will-electric-cars-make-traffic-quieter-yes-no/
  • Most new power equipment will be battery-powered, so machines like lawn mowers, leaf blowers, and chainsaws will be much quieter and less polluting than they are today. Batteries will be energy-dense enough to compete with gasoline in these use cases, and differences in overall equipment weight and running time will be insignificant. The notion of a neighbor shattering your sense of peace and quiet with loud yard work will get increasingly alien. 
  • A machine will pass the Turing Test by the end of this decade. The milestone will attract enormous amounts of attention and will lead to several retests, some of which the machine will fail, proving that it lacks the full range of human intelligence. It will lead to debate over the Turing Test’s validity as a measure of true intelligence (Ray Kurzweil actually talked about this phenomenon of “moving the goalposts” whenever we think about how smart computers are), and many AI experts will point out the existence of decades-long skepticism in the Turing Test in their community.
  • The best AIs circa 2029 won’t be able to understand and upgrade their own source codes. They will still be narrow AIs, albeit an order of magnitude better than the ones we have today.
  • Machines will become better than humans at the vast majority of computer, card, and board games. The only exceptions will be very obscure games or recently created games that no one has bothered to program an AI to play yet. But even for those games, there will be AIs with general intelligence and learning abilities that will be “good enough” to play as well as average humans by reading the instruction manuals and teaching themselves through simulated self-play.
  • The cost of getting your genome sequenced and expertly interpreted will drop below $1,000, and enough about the human genome will have been deciphered to make the cost worth the benefit for everyone. By the end of the decade, it will be common for newborns in rich countries to have their genomes sequenced.
  • Better technology will also let pregnant women noninvasively obtain their fetuses’ DNA, at affordable cost.
  • Cheap DNA tests that can measure a person’s innate IQ and core personality traits with high accuracy will become widely available. There is the potential for this to cause social problems. 
  • At-home medical testing kits and diagnostic devices like swallowable camera-pills will become vastly better and more common.
  • Space tourism will become routine thanks to privately owned spacecraft. 
  • Marijuana will be effectively decriminalized in the U.S. Either the federal government will overturn its marijuana prohibitions, or some patchwork of state and federal bans will remain but be so weakened and lightly enforced that there will be no real government barriers to obtaining and using marijuana. 
  • By the end of this decade, photos of almost every living person will be available online (mostly on social media). Apps will exist that can scan through trillions of photos to find your doppelgangers. 
  • In 2029, the youngest Baby Boomer and the oldest Gen Xer will turn 65. 
  • Drones will be used in an attempted or successful assassination of at least one major world leader (Note: Venezuela’s Nicholas Maduro wasn’t high profile enough).

2030s

  • VR and AR goggles will become refined technologies and probably merge into a single type of lightweight device. Like smartphones today, anyone who wants the glasses in 2030 will have them. Even poor people in Africa will be able to buy them. A set of the glasses will last a day on a single charge under normal use.  
  • Augmented reality contact lenses will enter mass production and become widely available, though they won’t be as good as AR glasses and they might need remotely linked, body-worn hardware to provide them with power and data. https://www.inverse.com/article/31034-augmented-reality-contact-lenses
  • The bulky VR goggles of the 2020s will transform into lightweight, portable V.R. glasses thanks to improved technology. The glasses will display lifelike footage. However, the best VR goggles will still need to be plugged into other devices, like routers or PCs.
  • Wall-sized, thin, 8K or even 16K TVs will become common in homes in rich countries, and the TVs will be able to display 3D picture without the use of glasses, though the 3D effect will only be visible to people sitting directly in front of the screen. A sort of virtual reality chamber could be created at moderate cost by installing those TVs on all the walls of a room to create a single, wraparound screen.
  • It will be common for celebrities of all kinds to make money by “hanging out” with paying customers in virtual reality. For some lower-tier celebrities, this will be their sole source of income. 
  • Functional CRT TVs and computer monitors will only exist in museums and in the hands of antique collectors. This will also be true for DLP TVs. 
  • The video game industry will be bigger than ever and considered high art.
  • It will be standard practice for AIs to be doing hyperrealistic video game renderings, and for NPCs to behave very intelligently thanks to better AI. 
  • Books and computer tablets will merge into a single type of device that could be thought of as a “digital book.” It will be a book with several hundred pages made of thin, flexible digital displays (perhaps using ultra-energy efficient e-ink) instead of paper. At the tap of a button, the text on all of the pages will instantly change to display whichever book the user wanted to read at that moment. They could also be used as notebooks in which the user could hand write or draw things with a stylus, which would be saved as image or text files. The devices will fuse the tactile appeal of old-fashioned books with the content flexibility of tablet computers.
  • Loose-leaf sheets of “digital paper” will also exist thanks to the same technology.
  • Commercially available, head-worn, brain-computer-interface devices (BCIs) linked to augmented reality eyewear will gift humans with crude forms of telepathy and telekinesis. For example, a person wearing the devices could compose a short sentence merely by thinking about it, see the text projected across his augmented field of view, use his thoughts to make any needed edits, and then transmit the sentence to another person or machine, merely by thinking a “Send” command. The human recipient of the message with the same BCI/eyewear setup would see the text projected across his field of view and could compose a response through the same process the first person used. BCIs will also let humans send commands to a machines, like printers. For almost all use cases, this type of communication will be less efficient than traditional alternatives, like manually typing a text message or clicking the “Print” button at the top of a word processing application, but it will be an important proof of concept demonstration that will point to what is to come later in the century.
  • Loneliness, social isolation, and other problems caused by overuse of technology and the atomized structure of modern life will be, ironically, cured to a large extent by technology. Chatbots that can hold friendly (and even funny and amusing) conversations with humans for extended periods, diagnose and treat mental illnesses as well as human therapists, and customize themselves to meet the needs of humans will become ubiquitous. The AIs will become adept at analyzing human personalities and matching lonely people with friends and lovers, at matching them with social gatherings (including some created by machines), and at recommending daily activities that will satisfy them, hour-by-hour. Machines will come to understand that constant technology use is antithetical to human nature, so in order to promote human wellness, they find ways to impel humans to get out of their houses, interact with other humans, and be in nature. Autonomous taxis will also be widespread and will have low fares, making it easier for people who are isolated due to low income or poor health (such as many elderly people) to go out.
  • Chatbots will steadily improve their “humanness” over the decade. The instances when AIs say or do something nonsensical will get less and less frequent. Dumber people, children, and people with some types of mental illness will be the first ones to start insisting their AIs are intelligent like humans. Later, average people will start claiming the same. By the end of the decade, a personal assistant AI like “Samantha” from the movie Her will be commercially available. AI personal assistants will have convincing, simulated personalities that seem to have the same depth as humans. Users will be able to pick from among personality profiles or to build their own.  
  • Chatbots will be able to have intelligent conversations with humans about politics and culture, to identify factually wrong beliefs, biases, and cognitive blind spots in individuals, and to effectively challenge them through verbal discussion and debate. The potential will exist for technology to significantly enlighten the human population and to reduce sociopolitical polarization. However, it’s unclear how many people will choose to use this technology. 
  • Turing-Test-capable chatbots will also supercharge the problem of online harassment, character assassination, and deliberate disinformation by spamming the internet with negative reviews, bullying messages, emails to bosses, and humiliating “deepfake” photos and videos of targeted people. Today’s “troll farms” where humans sit at computer terminals following instructions to write bad reviews for specific people or businesses will be replaced by AI trolls that can pump out orders of magnitude more content per day. And just as people today can “buy likes” for their social media accounts or business webpages, people in the future will be able, at low cost, to buy harassment campaigns against other people and organizations they dislike. Discerning between machine-generated and human-generated internet content will be harder and more important than ever.
  • House robots will start becoming common in rich countries. They will be slower at doing household tasks than humans, but will still save people hours of labor per week. They may or may not be humanoid. For the sake of safety and minimizing annoyance, most robots will do their work when humans aren’t around. As in, you would come home from work every day and find the floors vacuumed, the lawn mowed, and your laundered clothes in your dresser, with nary a robot in sight since it will have gone back into its closet to recharge. You would never hear the commotion of a clothes washing machine, a vacuum cleaner or a lawnmower. All the work would get done when you were away, as if by magic.
  • People will start having genuine personal relationships with AIs and robots. For example, people will resist upgrading to new personal assistant AIs because they will have emotional attachments to their old ones. The destruction of a helper robot or AI might be as emotionally traumatic to some people as the death of a human relative.
  • Farm robots that are better than humans at fine motor tasks like picking strawberries humans will start becoming widespread.  
  • Self-driving cars will become cheap enough and practical enough for average income people to buy, and their driving behavior will become as efficient as an average human. Over the course of this decade, there will be rapid adoption of self-driving cars in rich countries. Freed from driving, people will switch to doing things like watching movies/TV and eating. Car interiors will change accordingly. Road fatalities, and the concomitant demands for traffic police, paramedics, E.R. doctors, car mechanics, and lawyers will sharply decrease. The car insurance industry will shrivel, forcing consolidation. (Humans in those occupations will also face increasing levels of direct job competition from machines over the course of the decade.)
  • Private owners of autonomous cars will start renting them out while not in use as taxis and package delivery vehicles. Your personal, autonomous car will drive you to work, then spend eight hours making money for you doing side jobs, and will be waiting for you outside your building at the end of the day.
  • The “big box” business model will start taking over the transportation and car repair industry thanks to the rise of electric, self-driving vehicles and autonomous taxis in place of personal car ownership. The multitudes of small, scattered car repair shops will be replaced by large, centralized car repair facilities that themselves resemble factory assembly lines. Self-driving vehicles will drive to them to have their problems diagnosed and fixed, sparing their human owners from having to waste their time sitting in waiting rooms.
  • The same kinds of facilities will make inroads into the junk yard industry, as they would have all the right tooling to cheaply and rapidly disassemble old vehicles, test the parts for functionality, and shunt them to disposal or individual resale. (The days of hunting through junkyards by yourself for a car part you need will eventually end–it will all be on eBay. )
  • Car ownership won’t die out because it will still be a status symbol, and having a car ready in your driveway will always be more convenient than having to wait even just two minutes for an Uber cab to arrive at the curb. People are lazy.
  • The ad hoc car rental model exemplified by autonomous Uber cabs and private people renting out their autonomous cars when not in use faces a challenge since daily demand for cars peaks during morning rush hour and afternoon rush hour. In other words, everyone needs a car at the same time each day, so the ratio of cars : people can’t deviate much from, say, 1:2. Of course, if more people telecommuted (almost certain in the future thanks to better VR, faster broadband, and tech-savvy Millennials reaching middle age and taking over the workplace), and if flexible schedules became more widespread (also likely, but within certain limits since most offices can’t function efficiently unless they have “all hands on deck” for at least a few hours each day), the ratio could go even lower. However, there’s still a bottom limit to how few cars a country will need to provide adequate daily transportation for its people.
  • Private delivery services will get cheaper and faster thanks to autonomous vehicles.
  • Automation will start having a major impact on the global economy. Machines will compensate for the shrinkage of the working-age human population in the developed world. Countries with “graying” populations like Japan and Germany will experience a new wave of economic growth. Demand for immigrant laborers will decrease across the world because of machines.
  • There will be a worldwide increase in the structural unemployment rate thanks to better and cheaper narrow AIs and robots. A plausible scenario would be for the U.S. unemployment rate to be 10%–which was last the case at the nadir of the Great Recession–but for every other economic indicator to be strong. The clear message would be that human labor is becoming decoupled from the economy.
  • Combining all the best AI and robotics technologies, it will be possible to create general-purpose androids that could function better in the real world (e.g. – perform in the workplace, learn new things, interact with humans, navigate public spaces, manage personal affairs) than the bottom 10% of humans (e.g. – elderly people, the disabled, criminals, the mentally ill, people with poor language abilities or low IQs), and in some narrow domains, the androids will be superhuman (e.g. – physical strength, memory, math abilities). Note that businesses will still find it better to employ task-specific, non-human-looking robots instead of general purpose androids. The androids will be very few in number by the end of 2039, and will be technology demonstrators and prototypes that get a lot of media coverage at carefully controlled tech company demo events. They won’t be available for any person to purchase, won’t roam around public spaces, and won’t have important jobs. At a minimum, each one will cost hundreds of thousands of dollars.
  • By the end of this decade, only poor people, lazy people, and conspiracy theorists (like anti-vaxxers) won’t have their genomes sequenced. It will be trivially cheap, and in fact free for many people (some socialized health care systems will fully subsidize it), and enough will be known about the human genome to make it worthwhile to have the information.
  • Computers will be able to accurately deduce a human’s outward appearance based on only a DNA sample. This will aid police detectives, and will have other interesting uses, such as allowing parents to see what their unborn children will look like as adults, or allowing anyone to see what they’d look like if they were of the opposite sex (one sex chromosome replaced). 
  • Trivially cheap gene sequencing and vastly improved knowledge of the human genome will give rise to a “human genome black market,” in which people secretly obtain DNA samples from others, sequence them, and use the data for their own ends. For example, a politician could be blackmailed by an enemy who threatened to publish a list of his genetic defects or the identities of his illegitimate children. Stalkers (of celebrities and ordinary people) would also be interested in obtaining the genetic information of the people they were obsessed with. It is practically impossible to prevent the release of one’s DNA since every discarded cup, bottle, or utensil has a sample. 
  • Markets will become brutally competitive and efficient thanks to AIs. Companies will sharply grasp consumer demand through real-time surveillance, and will use dynamic pricing much more widely and for everyday goods and services, and consumers will be alerted to bargains by their personal AIs and devices (e.g. – your AR glasses will visually highlight good deals as you walk through the aisles of a store). Your personal assistant AIs and robots will look out for your self-interest by countering the efforts of other AIs to sway your spending habits in ways that benefit companies and not you.
  • “Digital immortality” will become possible for average people. Personal assistant AIs, robot servants, and other monitoring devices will be able, through observation alone, to create highly accurate personality profiles of individual humans, and to anticipate their behavior with high fidelity. Voices, mannerisms and other biometrics will be digitally reproducible without any hint of error. Digital simulacra of individual humans will be further refined by having them take voluntary personality tests, and by uploading their genomes, brain scans and other body scans. Even if all of the genetic and biological data couldn’t be made sense of at the moment it was uploaded to an individual’s digital profile, there will be value in saving it since it might be decipherable in the future. (Note that “digital immortality” is not the same as “mind uploading.”)
  • Life expectancy will have increased by a few years thanks to pills and therapies that slightly extend human lifespan. Like, you take a $20 pill each day starting at age 20 and you end up dying at age 87 instead of age 84.
  • Global oil consumption will peak as people continue switching to other power sources.
  • Earliest possible date for the first manned Mars mission.
  • Machines will become as good as professional humans at language translation.
  • Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language. [Moved to the 2020s due to more rapid advances in this technology in 2022 and 2023]
  • Computers will also be able to automatically enhance and upscale old films by accurately colorizing them, removing defects like scratches, and sharpening or focusing footage (one technique will involve interpolating high-res still photos of long-dead actors onto the faces of those same actors in low-res moving footage). Computer enhancement will be so good that we’ll be able to watch films from the early 20th century with near-perfect image and audio clarity.
  • CGI will get so refined than moviegoers with 20/20 vision won’t be able to see the difference between footage of unaltered human actors and footage of 100% CGI actors.
  • Lifelike CGI and “performance capture” will enable “digital resurrections” of dead actors. Computers will be able to scan through every scrap of footage with, say, John Wayne in it, and to produce a perfect CGI simulacrum of him that even speaks with his natural voice, and it will be seamlessly inserted into future movies. Elderly actors might also license movie studios to create and use digital simulacra of their younger selves in new movies. The results will be very fascinating, but might also worsen Hollywood’s problem with making formulaic content.
  • Machines will be able to imitate the voices of specific humans so accurately that most human listeners won’t be able to tell the difference. Those that can reliably detect any difference will find it very faint.
  • Smartphone apps will be able to remotely monitor a person’s vital statistics and to quickly derive a wealth of data about things like their emotional state, health, age, and truthfulness from factors like their heart rate, breathing pattern, body movements, microexpressions, and speech patterns.
  • Tiny cameras that can capture and transmit high resolution footage will be available for a few dollars apiece. A device the size of a sugar cube that has enough memory and battery life to record video footage for several hours would fit the bill.
  • China’s military will get strong enough to defeat U.S. forces in the western Pacific. This means that, in a conventional war for control of the Spratly Islands and/or Taiwan, China would have >50% odds of winning. This shift in the local balance of power does not mean China will start a conflict. 
  • The quality and sophistication of China’s best military technology will surpass Russia’s best technology in all or almost all categories. However, it will still lag the U.S. 

2040s

  • The world and peoples’ outlooks and priorities will be very different than they were in 2019. Cheap renewable energy will have become widespread and totally negated any worries about an “energy crisis” ever happening, except in exotic, hypothetical scenarios about the distant future. There will be little need for immigration thanks to machine labor and cross-border telecommuting (VR, telepresence, and remote-controlled robots will be so advanced that even blue-collar jobs involving manual labor will be outsourced to workers living across borders). Moreover, there will be a strong sense in most Western countries that they’re already “diverse enough,” and that there are no further cultural benefits to letting in more foreigners since large communities of most foreign ethnic groups will already exist within their borders. There will be more need than ever for strong social safety nets and entitlement programs thanks to technological unemployment. AI will be a central political and social issue. It won’t be the borderline sci-fi, fringe issue it was in 2019.
  • Automation, mass unemployment, wealth inequalities between the owners of capital and everyone else, and differential access to expensive human augmentation technologies (like genetic engineering) will produce overwhelming political pressure for some kind of wealth redistribution and social safety net expansion. Countries that have diligently made small, additive reforms as necessary over the preceding decades will be untroubled. However, countries that failed to adapt their political and economic systems will face upheaval.
  • 2045 will pass without the Technological Singularity happening. Ray Kurzweil will either celebrate his 97th birthday in a wheelchair, or as a popsicle frozen at the Alcor Foundation.
  • Supercomputers that match or surpass upper-level estimates of the human brain’s computational capabilities will cost a few hundred thousand to a few million dollars apiece, meaning tech companies and universities will be able to afford large numbers of them for AI R&D projects, accelerating progress in the field. Hardware will no longer be the limiting factor to building AGI. If it hasn’t been built yet, it will be due to failure to figure out how to arrange the hardware in the right way to support intelligent thought, and/or to a failure to develop the necessary software. 
  • With robots running the economy, it will be common for businesses to operate 24/7: restaurants will never close, online orders made at 3:00 am will be packed in boxes by 3:10 am, and autonomous delivery trucks will only stop to refuel, exchange cargo, or get preventative maintenance.
  • Advanced energy technology, robot servants, 3D printers, telepresence, and other technologies will allow people to live largely “off-grid” if they choose, while still enjoying a level of comfort that 2019 people would envy.
  • Robot servants will be common in upper-income and middle-class households across the developed world. Some will be function-specific, like autonomous lawn mowers, while others will be multifunctional, like robot butlers. They will work more slowly than humans and will make mistakes more often, but nevertheless, they will save their human owners many hours of work each week. A high-quality multifunction robot servant will cost $5,000 – $20,000 in today’s money. In other words, cheaper than a new car, but still a significant investment of money.
  • Androids will be significantly better than they were in the 2030s, and aspects of their physiques, intelligence, and capabilities will overlap even more with humans, but they still won’t be able to pass as one of us in normal situations. If you could examine one at very close distance, you would see that its skin and other external features were less detailed than those of real humans. Their body movements will be clumsier and more limited than the average human’s, probably leaving them with the same overall reflexes, nimbleness, balance, and speed as an elderly human. They will also lack the battery life to function for a whole work day in physically demanding occupations.
  • Recycling will become much more efficient and practical thanks to house robots properly cleaning, sorting, and crushing/compacting waste before disposing of it. Automated sorting machines at recycling centers will also be much better than they are today. Today, recycling programs are hobbled because even well-meaning humans struggle to remember which of their trash items are recyclable and which aren’t since the acceptable items vary from one municipality to the next, and as a result, recycling centers get large amounts of unusable material, which they must filter out at great cost. House robots would remember it perfectly.
  • Thanks to this diligence, house robots will also increase backyard composting, easing the burden on municipal trash services. 
  • Genetic engineering of offspring becomes about as common among richer people as IVF is among them in 2023. The engineered offspring aren’t “superhumans”–they’re slightly better than they would have been without technological intervention.
  • It will be common for cities, towns and states to heavily restrict or ban human-driven vehicles within their boundaries. A sea change in thinking will happen as autonomous cars become accepted as “the norm,” and human-driven cars start being thought of as unusual and dangerous.
  • There will be something that could be called a “self-driving RV vacation industry” wherein a person would rent a self-driving RV that would be programmed to take them on a multi-day tour of some area, hitting all the important sights. At each one, a virtual tour guide that the person could see, hear and interact with through smart glasses would lead them around on foot.
  • Over 90% of new car sales in developed countries will be for electric vehicles. Just as the invention of the automobile transformed horses into status goods used for leisure, the rise of electric vehicles will transform internal combustion vehicles into a niche market for richer people. 
  • A global “family tree” showing how all humans are related will be built using written genealogical records and genomic data from the billions of people who have had their DNA sequenced. It will become impossible to hide illegitimate children, and it will also become possible for people to find “genetic doppelgangers”–other people they have no familial relationship to, but with whom, by some coincidence, they share a very large number of genes. 
  • Improved knowledge of human genetics and its relevance to personality traits and interests will strengthen AI’s ability to match humans with friends, lovers, and careers. Rising technological unemployment will create a need for machines to match human workers with the remaining jobs in as efficient a manner as possible.
  • People with distinctive personalities (particularly vibrant, funny, or sexy) will routinely sell “digital copies” of themselves for other people to download and use as AI personal assistants. This will be analogous to today’s ability to select different voices for personal GPS devices. Additionally, users will be able to tweak “base versions” of downloaded personalities to suit their unique preferences. 
  • The digital personalities of fictitious people, like movie and cartoon characters, and of long-dead people, will also be downloadable. 
  • Realistic robot sex bots that can move and talk will exist. They won’t perfectly mimic humans, but will be “good enough” for most users. Using them will be considered weird and “for losers” at first, but in coming decades it will go mainstream, following the same pattern as Internet dating. [If we think of sex as a type of task, and if we agree that machines will someday be able to do all tasks better than humans, then it follows that robots will be better than humans at sex.]  
  • Augmented reality contact lenses will give people superhuman vision.
  • 3D TVs will improve. Among other things, multiple viewers watching the same TV from different viewing angles will experience the 3D visual effect. 
  • Any person will be able to use his personal technologies to create a highly immersive audiovisual experience almost anywhere. For example, a person’s computer glasses could simulate the experience of being in an IMAX movie theater. Alternatively, the person could use his smartphone or another device to beam video images against a wall, creating an ad hoc theater for real. Major improvements to the price-performance and energy efficiency of LEDs and lasers will let small personal devices to have inbuilt light projectors that match the quality of professional-quality projectors that cost thousands of dollars today.
  • Obesity rates in rich and middle income countries peak and start declining, mostly thanks to the weight loss drugs invented in the 2020s becoming open to generic manufacture. 
  • The richest person alive will achieve a $1 trillion net worth.
  • There will be drones that can use facial recognition and other forms of recognition to autonomously track down specific people and kill them. The simplest versions of those weapons will be small kamikaze drones that crash into their targets and blow up on impact.
  • At least one major military will be using some type of combat robot (whether it is airborne, seaborne, or terrestrial) that is empowered to fire on human enemies autonomously. 

2050s

  • This is the earliest possible time that AGI/SAI will be invented. It will not be able to instantly change everything in the world or to initiate a Singularity, but it will rapidly grow in intelligence, wealth, and power. It will probably be preceded by successful computer simulations of the brains of progressively more complex model organisms, such as flatworms, fruit flies, and lab rats. Also, there won’t be a discrete moment in time when machines “become intelligent”–instead, there will be a multi-year period of time where machines surpass humans in an ever-growing number of areas. Looking back, it won’t be possible to say at which moment the first machine became intelligent. Using different definitions and tests of “intelligence,” it will be possible to argue that AGI/SAI was achieved by different computers at different points in the multi-year period of time. (Likewise, biologists can’t agree on the exact moment or even the exact millennium when our hominid ancestors became “intelligent.”)
  • Humans will be heavily dependent upon their machines for almost everything (e.g. – friendship, planning the day, random questions to be answered, career advice, legal counseling, medical checkups, driving cars), and the dependency will be so ingrained that humans will reflexively assume that “The Machines are always right.” Consciously and unconsciously, people will yield more and more of their decision-making and opinion-forming to machines, and find that they and the world writ large are better off for it. This will be akin to having an angel on your shoulder watching your surroundings and watching you, and giving you constructive advice all the time. 
  • In the developed world, less than 50% of people between age 22 and 65 will have gainful full-time jobs. However, if unprofitable full-time jobs that only persist thanks to government subsidies (such as someone running a small coffee shop and paying the bills with their monthly UBI check) and full-time volunteer “jobs” (such as picking up trash in the neighborhood) are counted, most people in that age cohort will be “doing stuff” on a full-time basis.  
  • The doomsaying about Global Warming will start to quiet down as the world’s transition to clean energy hits full stride and predictions about catastrophes from people like Al Gore fail to pan out by their deadlines. Sadly, people will just switch to worrying about and arguing about some new set of doomsday prophecies about something else.
  • By almost all measures, standards of living will be better in 2050 than today. People will commonly have all types of wonderful consumer devices and appliances that we can’t even fathom. However, some narrow aspects of daily life are likely to worsen, such as overcrowding and further erosion of the human character. Just as people today have short memories and take too many things for granted, so shall people in the 2050s fail to appreciate how much the standard of living has risen since today, and they will ignore all the steady triumphs humanity has made over its problems, and by default, people will still believe the world is constantly on the verge of collapsing and that things are always getting worse.
  • Cheap desalination will provide humanity with unlimited amounts of drinking water and end the prospect of “water wars.” 
  • Mass surveillance and ubiquitous technology will have minimized violent crime and property crime in developed countries: It will be almost impossible to commit such crimes without a surveillance camera or some other type of sensor detecting the act, or without some device recording the criminal’s presence in the area at the time of the act. House robots will contribute by effectively standing guard over your property at night while you sleep. 
  • It will be common for people to have health monitoring devices on and inside of their bodies that continuously track things like their heart rate, blood pressure, respiration rate, and gene expression. If a person has a health emergency or appears likely to have one, his or her devices will send out a distress signal alerting EMS and nearby random citizens. If you walked up to such a person while wearing AR glasses, you would see their vital statistics and would receive instructions on how to assist them (i.e. – How to do CPR). Robots will also be able to render medical aid. 
  • Cities and their suburbs across the world will have experienced massive growth since 2019. Telepresence, relatively easy off-grid living, and technological unemployment will not, on balance, have driven more people out of metro areas than have migrated into them. Farming areas full of flat, boring land will have been depopulated, and many farms will be 100% automated. The people who choose to leave the metro areas for the “wilderness” will concentrate in rural areas (including national parks) where the climate is good, the natural scenery is nice, and there are opportunities for outdoor recreation. Real estate prices will, in inflation-adjusted terms, be much higher in most metro areas and places with natural beauty than they were in 2020 because the “supply” of those prime locations is almost fixed, whereas the demand for them is elastic and will rise thanks to population growth, rising incomes, and the aforementioned technology advancements.
  • Therapeutic cloning and stem cell therapies will become useful and will effectively extend human lifespan. For example, a 70-year-old with a failing heart will be able to have a new one grown in a lab using his own DNA, and then implanted into his chest to replace the failing original organ. The new heart will be equivalent to what he had when at age 18 years, so it will last another 52 years before it too fails. In a sense, this will represent age reversal to one part of his body. In a sense, this will represent age reversal to one part of his body.
  • As a result of the above technologies, it will be much rarer for people in rich countries to die waiting for organ transplants than it is now, in 2022.
  • The first healthy clone of an adult human will be born.
  • The cloning of cats and dogs will get cheap enough for middle income people to afford it. 
  • Many factories, farms, and supply chains will be 100% automated, and it will be common for goods to not be touched by a human being’s hands until they reach their buyers. Robots will deliver Amazon packages to your doorstep and even carry them into your house. Items ordered off the internet will appear inside your house a few hours later, as if by magic. 
  • Smaller versions of the robots used on automated farms will be available at low cost to average people, letting them effortlessly create backyard gardens. This will boost global food production and let people have greater control over where their food comes from and what it contains. 
  • The last of America’s Cold War-era weapon platforms (e.g. – the B-52 bomber, F-15 fighter, M1 Abrams tank, Nimitz aircraft carrier) will finally be retired from service. There will be instances where four generations of people from the same military family served on the same type of plane or ship. 
  • Cheap guided bullets, which can make midair course changes and be fired out of conventional man-portable rifles, will become common in advanced armies. 
  • Personal “cloaking devices” made of clothes studded with pinhole cameras and thin, flexible sheets of LEDs, colored e-ink, or some metamaterial with similar abilities will be commercially available. The cameras will monitor the appearance of the person’s surroundings and tell the display pixels to change their colors to match.
  • The “cloaking” outfits will also have benign applications related to fashion and everyday utility. People wearing them could use them to display morphing patterns and colors of their choice. It would even be possible to become a “walking TV.” The pixels could also be made to glow bright white, allowing the wearer to turn any part of his body into a flashlight. Ski masks made of the same material would let wearers change their facial features, fooling most face recognition cameras and certainly fooling the unaided eyes of humans, at least at a distance.
  • Powered exoskeletons will become practical for a wide range of applications, mainly due to improvements in batteries. For example, a disabled person could use a lightweight exoskeleton with a battery the size of a purse to walk around for a whole day on a single charge, and a soldier in a heavy-duty exoskeleton with a large backpack battery could do a day of marching on a single charge. (Note: Even though it will be technologically possible to equip infantrymen with combat exoskeletons, armies might reject the idea due to other impracticalities.)
  • There will be no technological or financial barrier to building powered combat exoskeletons that have cloaking devices. 
  • The richest person alive will achieve a $1 trillion net worth. [Moved to the 2040s due to shifting trends in inflation and net worth growth among the richest people.]
  • It will be technologically and financially feasible for small aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by carbon-neutral synthetic fossil fuels that cost no more than normal fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells.
  • Cheap guided bullets, capable of midair course changes to hit targets and of being fired out of conventional rifles, will become common in advanced armies. (One or two degrees of course change per 100 meters of bullet travel is realistic. ) Practical, affordable rifles capable of limited self-aiming will also exist (similar to the “Smartgun” from the movie Aliens). Thanks to these technologies, an ordinary rifleman of the 2050s will be like the snipers of today.

2060s

  • Machines will be better at satisfyingly matching humans with fields of study, jobs, friends, romantic partners, hobbies, and daily activities than most humans can do for themselves. Machines themselves will make better friends, confidants, advisers, and even lovers than humans. Additionally, machines will be smarter and more skilled at humans in most areas of knowledge and types of work. A cultural sea change will happen, in which most humans come to trust, rely upon, defend, and love machines.
  • House robots and human-sized worker robots will be as strong, agile, and dexterous as most humans, and their batteries will be energy-dense enough to power them for most of the day. A typical American family might have multiple robot servants that physically follow around the humans each day to help with tasks. The family members will also be continuously monitored and “followed” by A.I.s embedded in their portable personal computing devices and possibly in their bodies. 
  • Cheap home delivery of groceries, robot chefs, and a vast trove of free online recipes will enable people in average households to eat restaurant-quality meals at home every day, at low cost. Predictive algorithms that can appropriately choose new meals for humans based on their known taste preferences and other factors will determine the menu, and many people will face a culinary “satisfaction paradox.”
  • Average people will have access to high-quality meals that only rich people can have today at fancy restaurants.
  • Machines will understand humans individually and at the species level better than humans understand themselves. They will have highly accurate personality models of most humans along with a comprehensive grasp of human sociology, human decision-making, human psychology, human cognitive biases, and human nature, and will pool the information to accurately predict human behavior. A nascent version of a 1:1 computer simulation of the Earth–with the human population modeled in great detail–will be created. An important application will be economic modeling and forecasting. 
  • Machines will be better teachers than most trained humans. The former will have much sharper grasps of their pupils’ individual strengths, weaknesses, interests, and learning styles, and will be able to create and grade tests in a much fairer and less biased manner than humans. Every person will have his own tutor. 
  • There will be a small, permanent human presence on the Moon.
  • If a manned Mars mission hasn’t happened yet, then there will be intense pressure to do so by the centennial of the first Moon landing (1969).
  • The worldwide number of supercentenarians–people who are at least 110 years old–will be sharply higher than it was in 2019: Their population size could be 10 times bigger or more. 
  • Advances in a variety of technologies will make it possible to cryonically freeze humans in a manner that doesn’t pulverize their tissue. However, the technology needed to safely thaw them out won’t be invented for decades. 
  • China will effectively close the technological, military, and standard of living gaps with other developed countries. Aside from the unpleasantness of being a more crowded place, life in China won’t be worse overall than life in Japan or the average European country. Importantly, China’s pollution levels will be much lower than they are today thanks to a variety of factors.
  • Small drones (mostly aerial) will have revolutionized warfare, terrorism, assassinations, and crime and will be mature technologies. An average person will be able to get a drone of some kind that can follow his orders to find and kill other people or to destroy things.
  • Countermeasures against those small drones will also have evolved, and might include defensive drones and mass surveillance networks to detect drone attacks early on. The networks would warn people via their body-worn devices of incoming drone attacks or of sightings of potentially hostile drones. The body-worn devices, such as smartphones and AR glasses, might even have their own abilities to automatically detect drones by sight and sound and to alert their wearers.
  • At least one large, manned spaceship that is designed to stay in space will exist, probably in the form of a reusable ferry that moves people between Earth and Mars.

2070s

  • There has been at least one incident where an AI, either deliberately or inadvertently, took an action that killed thousands of humans and caused billions of dollars in damage. However, the problem was contained by humans–who still control most of the world’s infrastructure and resources–and by AIs that stayed friendly to us. Our first experience with a hostile AGI or nonaligned AGI will not be cataclysmic, as it is in most sci-fi films about the topic. This success doesn’t mean our luck will last forever. 
  • 100 years after the U.S. “declared war” on cancer, there still will not be a “cure” for most types of cancer, but vaccination, early detection, treatment, and management of cancer will be vastly better, and in countries with modern healthcare systems, most cancer diagnoses will not reduce a person’s life expectancy. Consider that diabetes and AIDS were once considered “death sentences” that would invariably kill people within a few years of diagnosis, until medicines were developed that transformed them into treatable, chronic health conditions. 
  • Hospital-acquired infections will be far less of a problem than they are in 2020 thanks to better sterilization practices, mostly made possible by robots.
  • It will be technologically and financially feasible for large commercial aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by synthetic fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells. 
  • Digital or robotic companions that seem (or actually are) intelligent, funny, and loving will be easier for humans to associate with than other humans.
  • Technology will enable the creation of absolute surveillance states, where all human behavior is either constantly monitored or is inferred with high accuracy based on available information. Even a person’s innermost thoughts will be knowable thanks to technologies that monitor him or her for the slightest things like microexpressions, twitches, changes in voice tone, and eye gazes. When combined with other data regarding how the person spends their time and money, it will be possible to read their minds. The Thought Police will be a reality in some countries.  
  • Thanks to mass surveillance, and the gathering and sharing of biometric data, you’ll never be a stranger to an intelligent machine or to a human with access to the right software and devices. For example, if you go on a vacation to a new country on the other side of the world, the android waiter at a restaurant will know your name and preferences after glancing at your face.
  • Thanks to advanced lab synthesis of foods, new spices, hybrid fruits and vegetables, and meats with entirely new taste profiles will be brought into existence. Swaths of the “landscape of all possible flavors” that are currently unexplored will be.
  • Many heavily automated farms (including indoor farms and gardens on suburban plots of land) will produce food that is noticeably tastier and measurably more nutritious that most of today’s food because the advanced farms won’t need to use pesticides or to favor crop varieties that are hardy enough to endure transport over long supply chains. At low cost and for little effort, communities and individuals with small amounts of land will be able to meet their own food needs locally. People who value “natural” lifestyles might, ironically, find it most beneficial to rely on robots to make their food for them.
  • Glasses-free 3D TVs will be almost fully developed technologies with few performance limitations. 
  • A slew of weapons technologies, including self-aiming guns, highly advanced scopes, and guided bullets, will give infantrymen incredible levels of battlefield potency. Common feats will include the doubling the maximum lethal range against human targets, sniper-like accuracy from rapid fire, the ability to shoot down low-flying aircraft, to cripple vehicles from long distances with bullets through their vital components like tires and gas tanks, and the disabling of tanks by destroying their fragile external sensors or sending bullets directly down the barrels of their main guns to hit the shells loaded in them.

2100

  • Humans probably won’t be the dominant intelligent life forms on Earth.
  • Latest possible time that AGI/SAI will be invented. By this point, computer hardware will so powerful that we could do 1:1 digital simulations of human brains. If our AI still falls far short of human-like general intelligence and creativity, then it might be that only organic substrates have the necessary properties to support them.
  • The worst case scenario is that AGI/Strong AI will have not been invented yet, but thousands of different types of highly efficient, task-specific Narrow AIs will have (often coupled to robot bodies), and they will fill almost every labor niche better than human workers ever could (“Death by a Thousand Cuts” job automation scenario). Humans grow up in a world where no one has to work, and the notion of drudge work, suffering through a daily commute, and involuntarily waking up at 6:00 am five days a week is unfathomable. Every human will have machines that constantly monitor them or follow them around, and meet practically all their needs.
  • Telepresence technology will also be very advanced, allowing humans to do nearly any task remotely, from any other place in the world, in safety and comfort. This will include cognitive tasks and hands-on tasks. If any humans still have jobs, they’ll be able to work from anywhere.
  • Sophisticated narrow AI will be integrated into the telepresence technology, providing human workers with real-time assistance with tasks. An illustrative scenario would have a human in Nigeria using a VR rig to remotely control a robot that is fixing an air conditioner in England. Software programs monitoring the live video feed would recognize all of the objects in the robot’s field of view and would also understand what the human worker was trying to accomplish, and the programs would help him by visually highlighting tools or air conditioner components, or by giving him verbal advice on what to do. 
  • The use of robotic surrogate bodies for remote work will also erase any employment gaps caused by physical strength and endurance differences between the sexes and between the elderly and the young. Small men, old people, and women of average stature will be just as good at performing hard manual labor as big men. The easing of physical strain associated with work will also allow people to work past today’s retirement age. However, most serious physical work will be best left to autonomous machines.
  • The world could in many ways resemble Ray Kurzweil’s predicted Post-Singularity world. However, the improvements and changes will have accrued thanks to decades of AGI/Strong AI steady effort. Everything will not instantly change on DD/MM/2045 as Kurzweil suggests it will.
  • At least one, non-aligned AGI has done serious damage to humans, comparable in terms of deaths and economic losses to a major natural disaster or small war. 
  • The global population of autonomous robots will be within an order of magnitude of the human population. It will be very common to see robots in homes, workplaces, public spaces, and even in wilderness areas.
  • The global population of AIs and digital uploads of dead humans is also within an order of magnitude of the human population.
  • Hundreds of millions, and possibly billions, of “digitally immortal avatars” of dead humans will exist, and you will be able to interact with them through a variety of means (in FIVR, through devices like earpieces and TV screens, in the real world if the avatar takes over an android body resembling the human it was based on). 
  • A weak sort of immortality will be available thanks to self-cloning, immortal digital avatars, and perhaps mind uploading. You could clone yourself and instruct your digital avatar–which would be a machine programmed with your personality and memories–to raise the clone and ensure it developed to resemble you. Your digital avatar might have an android body or could exist in a disembodied state. 
  • It will be possible to make clones of humans using only their digital format genomic data. In other words, if you had a .txt file containing a person’s full genetic code, you could use that by itself to make a living, breathing clone. Having samples of their cells would not be necessary. 
  • The “DNA black market” that arose in the 2030s will pose an even bigger threat since it will be now possible to use DNA samples alone or their corresponding .txt files to clone a person or to produce a sperm or egg cell and, in turn, a child. Potential abuses include random people cloning or having the children of celebrities they are obsessed with, or cloning billionaires in the hopes of milking the clones for money. Important people who might be targets of such thefts will go to pains to prevent their DNA from being known. Since dead people have no rights, third parties might be able to get away with cloning or making gametes of the deceased.
  • Life expectancy escape velocity and perhaps medical immortality will be achieved. It will come not from magical, all-purpose nanomachines that fix all your body’s cells and DNA, but from a combination of technologies, including therapeutic cloning of human organs, cybernetic replacements for organs and limbs, and stem cell therapies that regenerate ageing tissues and organs inside the patient’s body. The treatments will be affordable in large part thanks to robot doctors and surgeons who work almost for free, and to medical patents expiring.
  • All other aspects of medicine and healthcare will have radically advanced. There will be vaccines and cures for almost all contagious diseases. We will be masters of human genetic engineering and know exactly how to produce people that today represent the top 1% of the human race (holistically combining IQ, genetic health, physical attractiveness, and likable/prosocial personality traits). However, the value of even a genius-IQ human will be questionable since intelligent machines will be so much smarter.
  • Augmentative cybernetics (including direct brain-to-computer links) will exist and be in common use.
  • While the traditional, “pure” races of humans will all still exist, notions of “race” and racial identity will be scrambled by the large numbers of mixed-race people who will be alive, and by widespread genetic engineering that will give people combinations of physical traits that were almost unachievable through normal human breeding. Examples might include black people with naturally blue eyes, or East Asians with naturally blonde hair. (Voluntary genetic engineering will also ensure that redheads don’t ever die out.) Some people will even have totally new genes, either synthesized in labs or borrowed from animals, that give them physical traits not found in any preexisting human race, like red eyes or purple hair.
  • Full-immersion virtual reality (FIVR) will exist wherein AI game masters constantly tailor environments, NPCs and events to suit each player’s needs and to keep them entertained. Every human will have his own virtual game universe where he’s #1. With no jobs in the real world to occupy them, it’s quite possible that a large fraction of the human race will willingly choose to live in FIVR. (Related to the satisfaction paradox) Elements of these virtual environments could be pornographic and sexual, allowing people to gratify any type of sexual fetish or urge with computer-generated scenarios and partners. 
  • More generally, AIs and humans whose creativity is turbocharged by machines will create enjoyable, consumable content (e.g. – films, TV shows, songs, artwork, jokes, new types of meals) faster than non-augmented humans can consume it. As a simple example of what this will be like, assume you have 15 hours of free time per day, that you love spending it listening to music, and each day, your favorite bands produce 16 hours worth of new songs that you really like.
  • TVs will be capable of true holography, with no visual distortions or flaws. 
  • The vast majority of unaugmented human beings will no longer be assets that can invent things and do useful work: they will be liabilities that do (almost) everything worse than intelligent machines and augmented humans. Ergo, the size of a nation’s human population will subtract from its economic and military power, and radical shifts in geopolitics are possible. Geographically large but sparsely populated countries like Russia, Australia and Canada might become very strong.
  • The transition to green energy sources will be complete, and humans will no longer be net emitters of greenhouse gases. The means will exist to start reducing global temperatures to restore the Earth to its pre-industrial state, but people will resist because they will have gotten used to the warmer climate. People living in Canada and Russia won’t want their countries to get cold again.
  • Synthetic meat will taste no different from animal meat, and will be at least as cheap to make. The raising and/or killing of animals for food will be be illegal in many countries, and trends will clearly show the practice heading for worldwide ban. 
  • Meats that are expensive and/or rare today, like Kobe beef steaks, snakes, bats, or even human flesh, will be cheap and widely available thanks to meat synthesis technology. 
  • Cheap, synthetic chicken eggs will also exist and will taste no different from natural eggs. 
  • The means to radical alter human bodies, alter memories, and alter brain structures will be available. The fundamental bases of human existence and human social dynamics will change unpredictably once differences in appearance/attractiveness, intelligence, and personality traits can be eliminated at will. Individuals won’t be defined by fixed attributes anymore. 
  • The ability to delete bad memories and to control brain activity will cure many mental illnesses. 
  • Brain implants will make “telepathy” possible between humans, machines and animals. Computers, sensors and displays will be embedded everywhere in the built environment and in nature, allowing humans with brain implants to interface with and control things around them through thought alone. This doesn’t mean traditional ways of communicating and doing things (like speaking and physically pushing buttons or turning doorknobs) will die out. 
  • Brain implants and brain surgeries will also be used to enhance IQ, change personality traits, and strengthen many types of skills. 
  • Using brain-computer interfaces, people will be able to make sophisticated songs and pieces of artwork with their thoughts alone. 
  • For aesthetic and safety reasons, the overwhelming majority of humans who have brain or body implants will only have internal implants that are invisible to other people. “Borg-like” implants that protrude from a person’s skin will be rare.
  • Technologically augmented humans and androids will have many abilities and qualities that ancient people considered “Godlike,” such as medical immortality, the ability to control objects by thought, telepathy, perfect memories, and superhuman senses.
  • Flying cars designed to carry humans could be common, but they will be flown by machines, not humans. Ground vehicles will retain many important advantages (fuel efficiency, cargo capacity, safety, noise level, and more) and won’t become obsolete. Instead of flying cars, it’s more likely that there will be millions of small, autonomous helicopters and VTOL aircraft that will cheaply ferry people through dense, national networks of helipads and airstrips. Autonomous land vehicles would take take passengers to and from the landing sites. (https://www.militantfuturist.com/why-flying-cars-never-took-off-and-probably-never-will/
  • The notion of vehicles (e.g. – cars, planes, and boats) polluting the air will be an alien concept. 
  • Advanced nanomachines could exist.
  • Vastly improved materials and routine use of very advanced computer design simulations (including simulations done in quantum computers) will mean that manufactured objects of all types will be optimally engineered in every respect, and might seem to have “magical” properties. For example, a car will be made of hundreds of different types of alloys, plastics, and glass, each optimized for a different part of the vehicle, and car recalls will never happen since the vehicles will undergo vast amounts of simulated testing in every conceivable driving condition in 1:1 virtual simulations of the real world. 
  • Design optimization and the rise of AGI consumption will virtually eliminate planned obsolescence. Products that were deliberately engineered to fail after needlessly short periods, and “new” product lines that were no better than what they replaced, but had non-interchangeable part sizes would be exposed for what they were, and AGI consumers would refuse to buy them. Production will become much more efficient and far fewer things will be thrown out. 
  • Relatively cheap interplanetary travel (probably just to Mars and to space stations and moons that are about as far as Mars) will exist.
  • Androids that are outwardly indistinguishable from humans will exist, and humans will hold no advantages over them (e.g. – physical dexterity, fine motor control, appropriateness of facial expressions, capacity for creative thought). Some androids will also be indistinguishable to the touch, meaning they will seem to be made of supple flesh and will be the same temperature as human bodies. However, their body parts will not be organic.
  • Sex robots will be indistinguishable from humans.
  • Android assassins like the T-800s from the Terminator films will exist. They will look identical to humans, will be able to blend into human populations, track down targets, and kill or abduct them. As in the films, these androids will be stronger, more durable, and more skilled with weapons than we are.
  • Some robots will carry drones meant to detach from them to autonomously perform specific tasks and then return. Some will also be able to detach their body parts (like a hand) to do the same. 
  • Robots that are outwardly identical to sci-fi and fantasy characters and extinct animals, like grey aliens, elves, fairies, giant house cats, and dinosaurs, will exist and will occasionally be seen in public. Some weird person will want their robot butler to look like bigfoot, and at least one hobbyist will build a life-sized robotic dragon that can fly and spit fire.
    https://www.mentalfloss.com/article/503967/could-game-throness-dragons-really-fly-we-asked-some-experts 
  • Humans interested in extreme body modifications will be able to surgically alter themselves to look like many of those creatures.
  • Machines that are outwardly indistinguishable from animals will also exist, and they will have surveillance and military applications. 
  • Drones, miniaturized smart weapons, and AIs will dominate warfare, from the top level of national strategy down to the simplest act of combat. The world’s strongest military could, with conventional weapons alone, destroy most of the world’s human population in a short period of time. 
  • It will be possible for one country to build an army of killer robots that equals the size of the whole human population. 
  • The construction and daily operation of prisons will have been fully automated, lowering the monetary costs of incarceration. As such, state prosecutors and judges will no longer feel pressure to let accused criminals have plea deals or to give them shorter prison sentences to ease the burdens of prison overcrowding and high overhead costs. 
  • The term “millionaire” will fall out of use in the U.S. and other Western countries since inflation will have rendered $1 million USD only as valuable as $90,000 USD was in 2019 (assuming a constant inflation rate of 3.0%).
  • There will still be major wealth and income inequality across the human race. However, wealth redistribution, better government services, advances in industrial productivity, and better technologies will ensure that even people in the bottom 1% have all their basic and intermediate life needs meet. In many ways, the poor people of 2100 will have better lives than the rich people of 2020.

2101 – 2200 AD

  • Humans will definitely stop being the dominant intelligent life forms on Earth. 
  • Many “humans” will be heavily augmented through genetic engineering, other forms of bioengineering, and cybernetics. People who outwardly look like the normal humans of today might actually have extensive internal modifications that give them superhuman abilities. Non-augmented, entirely “natural” humans like people in 2019 will be looked down upon in the same way you might today look at a very low IQ person with sensory impairments. Being forced by your biology to incapacitate yourself for 1/3 of each day to sleep will be tantamount to having a medical disability. 
  • Due to a reduced or nonexistent need for sleep among intelligent machines and augmented humans and to the increased interconnectedness of the planet, global time zones will become much less relevant. It will be common for machines, humans, businesses, and groups to use the same clock–probably Coordinated Universal Time (UTC)–and for activity to proceed on a 24/7 basis, with little regard of Earth’s day/night cycle. 
  • Physical disabilities and defects of appearance that cause untold anguish to people in 2019 will be easily and cheaply fixable. For example, male-pattern baldness and obesity will be completely ameliorated with minor medical interventions like pills or outpatient surgery. Missing or deformed limbs will be easily replaced, all types of plastic surgery (including sex reassignment) will be vastly better and cheaper than today, and spinal cord damage will be totally repairable. The global “obesity epidemic” will disappear. Transsexual people will be able to seamlessly alter their bodies to conform with their preferred genders, or to alter their brains so their gender identities conform with the bodies they were born with. 
  • These advanced body modification abilities will partly be thanks to medical micro- and nanomachines that will be able to travel through a person’s bloodstream and flesh, and to precisely kill small groups of cells (including bone) or stimulate cell proliferation. Over the course of a few sessions, a person could finely sculpt their nose, cheeks or private parts to match whatever they wanted. Genetic engineering for beauty will probably become less important as a result. 
  • All sleep disorders will be curable thanks to cybernetics that can use electrical pulses to quickly initiate sleep states in human brains. The same kinds of technologies will also reduce or eliminate the need for humans to sleep, and for people to control their dreams. 
  • Brain-computer interfaces will let people control, pre-program, and, to a limited extent, record their dreams. 
  • Through electrical signaling and chemical releases, the brain implants will be able to induce any type of mental or emotional state. This will include altered states of consciousness, like lucid dreaming, meditation, or intoxication (as a result, mind-altering drugs could become obsolete). A person might have to go through a “calibration period” where the implants would monitor and record their brain activity while they experienced different things, and then, the user would experiment with the implant to see how well it could induce the recorded brain states. Through a process of guided trial and error, they would become masters of their own minds. This ability would make human life richer and more productive, as people could have valuable experiences during portions of the day when they would otherwise be bored or “switched off,” and to even do useful problem-solving tasks in their sleep. Alternatively, the ability to induce feelings of blinding pleasure could lead to a major addiction problem among humans, and widen the productivity/usefulness gap between our species and intelligent machines.
  • Direct brain-to-computer interfaces and other advanced technologies will let humans enter virtual reality worlds that seem no different from the real world (the “Matrix scenario”), and to remotely control robot bodies located anywhere in the real world, with fully lifelike levels of sensory richness and fusion. Able to control perfect robot bodies of any design in the real world, and to take on any form in virtual worlds, some humans will have no use for real, fixed-form bodies, and will dispense with them, instead existing as “brains in jars.”  
  • Some “humans” will lack fixed, corporeal forms; they will be able to extensively modify their original bodies or to switch bodies at will. A person could take the form of something nonhuman, like a terrestrial squid. They exist as disembodied, cybernetically enhanced brains in life support containers that can assume control over any physical bodies they want, either by remotely controlling them through the internet, or by physically inserting their life support containers into matching slots in the bodies.
  • The line between “biological” and “synthetic” will blur as artificial objects take on some of the properties of organic matter and as they are integrated into originally biological life forms. Examples include humans who have artificial limbs and organs that are soft, supple, and interface with their nervous systems as well as natural limbs and organs; humans whose bodies contain special lines of cells meant to save and store non-genomic data as DNA; cybernetic implants that are soft and capable of growing inside a person’s body; machines that can heal their own bodies; and microscopic, self-reproducing machines that can thrive indefinitely in human bodies, in wild animals, or in other life forms and even be transferred between individuals, like benign diseases.
  • Brain implants will let humans merge minds with each other, AIs and animals. 
  • People will “download” memories and sensory experiences for pleasure and self-betterment. Some of the content will be recordings of actual experiences, while other content will be fully synthetic. 
  • Significant numbers of people will know what death is like, either because they died and were resuscitated with advanced medical technology, because they were revived from cryostasis, or because they downloaded a memory of someone else dying.
  • Almost all of today’s diseases will be cured.
  • The means to halt and reverse human aging will be created. The human population will come to be dominated by people who are eternally young and beautiful. 
  • Augmented females will have the natural ability to suspend and control their monthly fertility cycles.
  • Humans and machines will be immortal. Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who lived their lives knowing they were doomed to deteriorate and die. Today’s humans will be seen as deeply flawed and limited creatures, at the mercy of their instincts and small brains, and condemned to deal with random genetic flaws and chronic health problems they were randomly given at birth. 
  • Extreme longevity, better reproductive technologies that eliminate the need for a human partner to have children, and robots that do domestic work and provide companionship (including sex) will weaken the institution of marriage more than any time in human history. An indefinite lifetime of monogamy will be impossible for most people to commit to. 
  • At reasonable cost, it will be possible for women to create healthy, genetically related children at any point in their lives, and without using the 2019-era, pre-menopausal egg freezing technique. For example, a 90-year-old, menopausal woman will be able to use reproductive technologies to make a baby that shares 50% of her DNA. 
  • Opposite-sex human clones will exist. Such a clone would share 22-1/2 of their 23 chromosome pairs with their “original.” Only the final sex chromosome, which would be either a “Y” or a second “X”, would differ.  
  • Immortality, the automation of work, and widespread material abundance will completely transform lifestyles. With eternity to look forward to, people won’t feel pressured to get as rich as possible as quickly as possible. As stated, marriage will no longer be viewed as a lifetime commitment, and serial monogamy will probably become the norm. Relationships between parents and offspring will change as longevity erases the disparities in generational outlook and maturity that traditionally characterize parent-child interpersonal dynamics (e.g. – 300-year-old dad doesn’t know any better than his 270-year-old son). The “factory model” of public education–defined by conformity, rote memorization, frequent intelligence testing, and curricula structured to serve the needs of the job market–will disappear. The process of education will be custom-tailored to each person in terms of content, pacing, and style of instruction. Students will be much freer to explore subjects that interest them and to pursue those that best match their talents and interests. 
  • Radically extended human lifespans mean it will become much more common to have great-grandparents around. A cure for aging will also lead to families where members separated in age by many decades look the same age and have the same health. Additionally, older family members won’t be burdensome since they will be healthy.
  • The human population might start growing again thanks to medical immortality, to advanced fertility technologies including artificial wombs and cloning, and to robots that help raise children, reducing the workload for human parents. The human race won’t die out thanks to persistently low birthrates.
  • Thanks to radical genetic engineering, there will be “human-looking,” biological people among us that don’t belong to our species, Homo sapiens. Examples could include engineered people who have 48 chromosomes instead of 46, people whose genomes have been shortened thanks to the deletion of junk DNA, or people who look outwardly human but who have radically different genes within their 46 chromosomes, so they have different numbers or arrangements of internal organs (like two hearts), or even new types of internal organs, such as bird-like lung . Such people wouldn’t be able to naturally breed with Homo sapiens, and would belong to new hominid species. 
  • Extinct species for which we have DNA samples (ex – from passenger pigeons on display in a museum) will be “resurrected” using genetic technology.
  • The global mass surveillance network will encompass unpopulated areas and wilderness areas, protecting animals from poaching. Extinctions of large, wild animals will stop.
  • Large animal attacks on humans will become incredibly rare thanks to technologies like the global mass surveillance network foreseeing and preventing hostile encounters. Entire populations of large animal species could also have permanent tracking devices.
  • The technology for safely thawing humans out of cryostasis and returning them to good health will be created. 
  • Suspended animation will become a viable alternative to suicide. Miserable people could “put themselves under,” with instructions to not be revived until the ill circumstances that tormented them had disappeared or until cures for their mental and medical problems were found. 
  • A sort of “time travel” will become possible thanks to technology. Suspended animation will let people turn off their consciousnesses until any arbitrary date in the future. From their perspective, no time will have elapsed between being frozen and being thawed out, even if hundreds of years actually passed between those two events, meaning the suspended animation machine will subjectively be no different from a time machine to them. FIVR paired with data from the global surveillance networks will let people enter highly accurate computer simulations of the past. The data will come from sources like old maps, photos, videos, and the digital avatars of people, living and dead. The computers simulations of past eras will get less accurate as the dates get more distant and the data scarcer.
  • It will be possible to upload human minds to computers. The uploads will not share the same consciousness as their human progenitors, and will be thought of as “copies.” Mind uploads will be much more sophisticated than the digitally immortal avatars that will come into existence in the 2030s.
  • Different types of AGIs with fundamentally different mental architectures will exist. For example, some AGIs will be computer simulations of real human brains, while others will have totally alien inner workings. Just as a jetpack and a helicopter enable flight through totally different approaches, so will different types of AGIs be capable of intelligent thought. 
  • Gold, silver, and many other “precious metals” will be worth far less than today, adjusting for inflation, because better ways of extracting (including from seawater) them will have been developed. Space mining might also massively boost supplies of the metals, depressing prices. Diamonds will be nearly worthless thanks to better techniques for making them artificially. 
  • The first non-token quantities of minerals derived from asteroid mining will be delivered to the Earth’s surface. (Finding an asteroid that contains valuable minerals, altering its orbit to bring it closer to Earth, and then waiting for it to get here will take decades. No one will become a trillionaire from asteroid mining until well into the 22nd century.)
  • Synthetic life forms will colonize parts of the world uninhabitable to humans, like mountaintops, oceans (both on the surface and under it), and maybe even underground regions. Intelligent and semi-intelligent machines will be common sights, even in remote areas.
  • Intelligent life from Earth will colonize the entire Solar System, all dangerous space objects in our System will be found, the means to deflect or destroy them will be created, and intelligent machines will redesign themselves to be immune to the effects of radiation, solar flares, gamma rays, and EMP. As such, natural phenomena (including global warming) will no longer threaten the existence of civilization.  Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who were confined to Earth and at the mercy of planet-killing disasters. 
  • “End of the World” prophecies will become far less relevant since civilization will have spread beyond Earth and could be indefinitely self-sustaining even if Earth were destroyed. Some conspiracy theorists and religious people would deal with this by moving on to belief in “End of the Solar System” prophecies, but these will be based on extremely tenuous reasoning. 
  • The vast majority of intelligent life forms outside of Earth will be nonhuman. 
  • A self-sustaining, off-world industrial base will be created.
  • It will be possible to safely smoke cigarettes in more advanced types of space ships. 
  • Spy satellites with lenses big enough to read license plates and discern facial features will be in Earth orbit. 
  • Space probes made in our Solar System and traveling at sub-light speeds will reach nearby stars.
  • All of the useful knowledge and great works of art that our civilization has produced or discovered could fit into an advanced memory storage device the size of a thumb drive. It will be possible to pair this with something like a self-replicating Von Neumann Probe, creating small, long-lived machines that would know how to rebuild something exactly like our civilization from scratch. Among other data, they would have files on how to build intelligent machines and cloning labs, and files containing the genomes and mind uploads of billions of unique humans and non-human organisms. Copies of existing beings and of long-dead beings could be “manufactured” anywhere, and loaded with the personality traits and memories of their predecessors. Such machines could be distributed throughout our Solar System as an “insurance policy” against our extinction, or sent to other star systems to seed them with life. Some of the probes could also be hidden in remote, protected locations on Earth.
  • We will find out whether alien life exists on Mars and the other celestial bodies in our Solar System. 
  • Intelligent machines will get strong enough to destroy the human race, though it’s impossible to assign odds to whether they’ll choose to do so.
  • If the “Zoo Hypothesis” is right, and if intelligent aliens have decided not to talk to humans until we’ve reached a high level of intellect, ethics, and culture, then the machine-dominated civilization that will exist on Earth this century might be advanced enough to meet their standards. Uncontrollable emotions and impulses, illogical thinking, tribalism, self-destructive behavior, and fear of the unknown will no longer govern individual and group behavior. Aliens could reveal their existence knowing it wouldn’t cause pandemonium. 
  • The government will no longer be synonymous with slowness and incompetence since all bureaucrats will be replaced by machines.
  • Technology will be seamlessly fused with humans, other biological organisms, and the environment itself.  
  • It will be cheaper and more energy-efficient to grow or synthesize almost all types of food in labs or factories than to grow and harvest it in traditional, open-air farms. Shielded from the weather and pests and not dependent on soil quality, the amounts and prices of foods will be highly consistent over time, and worries about farmland muscling out or polluting natural ecosystems will vanish. Animals will no longer be raised for food. Not only will this benefit animals, but it will benefit humans since it will eliminate a a major source of communicable disease (e.g. – new influenza strains originate in farm animals and, thanks to close contact with human farmers, evolve to infect people thanks to a process called “zoonosis”).
  • Additionally, the means will exist to cheaply and artificially produce non-edible organic products, like wool and wood, in industrial quantities. This means anyone will be able to buy animal products that are very expensive today, like snakeskin boots or bear rugs. Unlimited quantities of perfectly simulated animal products that have useful properties, like pillow feathers (softness) or high-grade wool (heat insulation), will be available, and no animals will need to be harmed to make them. This will greatly help endangered species that are poached for their parts, like elephants killed for their ivory tusks. Lab-synthesized wood that is superior to “old-growth” timber will also exist.
  • The ability to cheaply make large quantities of organic products will lead to the creation of bizarre objects that no one conceived of before, like vehicle frames made of single pieces of bone.
  • A global network of sensors and drones will identify and track every non-microscopic species on the planet. Cryptids like “bigfoot” and the “Loch Ness Monster” will be definitively proven to not exist. The monitoring network will also make it possible to get highly accurate, real-time counts of entire species populations. Mass gathering of DNA samples–either taken directly from organisms or from biological residue they leave behind–will also allow the full genetic diversity of all non-microscopic species to be known. 
  • That same network of sensors and machines will let us monitor the health of all the planet’s ecosystems and to intervene to protect any species. Interventions could include mass, painless sterilizations of species that are throwing the local ecology out of balance, mass vaccinations of species suffering through disease epidemics, reintroductions of extinct species, or widescale genetic engineering of a species. 
  • The technology and means to implement David Pearce’s global “benign stewardship” of nonhuman organic life will become available.  (https://youtu.be/KDZ3MtC5Et8) After millennia of inflicting damage and pain to the environment and other species, humanity will have a chance to inaugurate an era free of suffering.
  • The means will exist to harmlessly control animal populations, predation, and to greatly ease animal suffering. 
  • The same medical treatments that radically extend human lifespans will also be used on pets. Fifty-year-old dogs and cloned cats that are the sixth in their lineage will exist. 
  • The mass surveillance network will also look skyward and see all anomalous atmospheric phenomena and UFOs.
  • Robots will clean up all of the garbage created in human history. 
  • Every significant archaeological site will be excavated and every shipwreck found. There will be no work left for people in the antiquities. 
  • Dynamic traffic lane reversal will become the default for all major roadways, sharply increasing road capacity without compromising safety. Autonomous cars that can instantly adapt to changes in traffic direction and that can easily avoid hitting each other even at high speeds will enable the transformation.
  • The Imperial system of weights and measures will fall out of use worldwide. Intelligent machines and posthumans will be able to switch to Metric without a problem. The same nimbleness of mind might also let them break from the ingrained traditions created by past humans and adopt other new standards, like new alphabets, numerals, and languages. 

“Debating the Future of AI” – summary and impressions

I recently shelled out the $100 (!) for a year-long subscription to Sam Harris’ Making Sense podcast, and came across a particularly interesting episode of it that is relevant to this blog. In episode #324, titled “Debating the Future of AI,” Harris interviewed Marc Andreessen (an-DREE-sin) about artificial intelligence. The latter has a computer science degree, helped invent the Netscape web browser, and has become very wealthy as a serial tech investor.

Andreessen recently wrote an essay, “Why AI will save the world,” that has received attention online. In it, Andreessen dismisses the biggest concerns about AI misalignment and doomsday, sounds the alarm about the risks of overregulating AI development in the name of safety, and describes some of the benefits AI will bring us in the near future. Harris read it, disagreed with several of its key claims, and invited Andreessen onto the podcast for a debate about the subject.

Before I go on to laying out their points and counterpoints as well as my impressions, let me say that, though this is a long blog, it takes much less time to read it than to listen to and digest the two-hour podcast. My notes on the podcast also don’t match how it unfolded chronologically. Finally, it would be a good idea for you to read Andreessen’s essay before continuing:
https://a16z.com/2023/06/06/ai-will-save-the-world/

Though Andreessen is generally upbeat in his essay, he worries that the top tech companies have recently been inflaming fears about AI to trick governments into creating regulations on AI that effectively entrench the top companies’ positions and bar smaller upstart companies from challenging them in the future. Such a lack of competition would be bad. (I think he’s right that we should be concerned about the true motivations of some of the people who are loudly complaining about AI risks.) Also, if U.S. overregulation slows down AI research too much, China could win the race to create to create the first AI, which he says would be “dark and dystopian.”

Harris is skeptical that government regulation will slow down AI development much given the technology’s obvious potential. It is so irresistible that powerful people and companies will find ways around laws so they can reap the benefits.

Harris agrees with the essay’s sentiment that more intelligence in the world will make most things better. The clearest example would be using AIs to find cures for diseases. Andreessen mentions a point from his essay that higher human intelligence levels lead to better personal outcomes in many domains. AIs could effectively make individual people smarter, letting the benefits accrue to them. Imagine each person having his own personal assistant, coach, mentor, and therapist available at any time. If they used their AIs right and followed their advice, a dumb person could make decisions as well as a smart person.

Harris recently re-watched the movie Her, and found it more intriguing in light of recent AI advances and those poised to happen. He thought there was something bleak about the depiction of people being “siloed” into interactions with portable, personal AIs.

Andreessen responds by pointing out that Karl Marx’ core insight was that technology alienates people from society. So the concern that Harris raises is in fact an old one that dates back to at least the Industrial Revolution. But any sober comparison between the daily lives of average people in Marx’ time vs today will show that technology has made things much better for people. Andreessen agrees that some technologies have indeed been alienating, but what’s more important is that most technologies liberate people from having to spend their time doing unpleasant things, which in turn gives them the time to self-actualize, which is the pinnacle of the human experience. (For example, it’s much more “human” to spend a beautiful afternoon outside playing with your child than it is to spend it inside responding to emails. Narrow AIs that we’ll have in the near future will be able to answer emails for us.) AI is merely the latest technology that will eliminate the nth bit of drudge work.

Andreessen admits that, in such a scenario, people might use their newfound time unwisely and for things other than self-actualization. I think that might be a bigger problem than he realizes, as future humans could spend their time doing animalistic or destructive things, like having nonstop fetish sex with androids, playing games in virtual reality, gambling, or indulging in drug addictions. Additionally, some people will develop mental or behavioral problems thanks to a sense of purposelessness caused by machines doing all the work for us.

Harris disagrees with Andreessen’s essay dismissing the risk of AIs exterminating the human race. The threat will someday be real, and he cites chess-playing computer programs as proof of what will happen. Though humans built the programs, even the best humans can’t beat the programs at chess. This is proof that it is possible for us to create machines that have superhuman abilities.

Harris makes a valid point, but he overlooks the fact that we humans might not be able to beat the chess programs we created, but we can still make a copy of a program to play against the original “hostile” program and tie it. Likewise, if we were confronted with a hostile AGI, we would have friendly AGIs to defend against it. Even if the hostile AGI were smarter than the friendly AGIs that were fighting for us, we could still win thanks to superior numbers and resources.

Harris thinks Andreessen’s essay trivializes the doomsday risk from AI by painting the belief’s adherents as crackpots of one form or another (I also thought that part of the essay was weak). Harris points out that is unfair since the camp has credible people like Geoffrey Hinton and Stuart Russell. Andreessen dismisses that and seems to say that even the smart, credible people have cultish mindsets regarding the issue.

Andreessen questions the value of predictions from experts in the field and he says a scientist who made an important advance in AI is, surprisingly, not actually qualified to make predictions about the social effects of AI in the future. When Reason Goes on Holiday is a book he recently read that explores this point, and its strongest supporting example is about the cadre of scientists who worked on the Manhattan Project but then decided to give the bomb’s secrets to Stalin and to create a disastrous anti-nuclear power movement in the West. While they were world-class experts in their technical domains, that wisdom didn’t carry over into their personal convictions or political beliefs. Likewise, though Geoffrey Hinton is a world-class expert in how the human brain works and has made important breakthroughs in computer neural networks, that doesn’t actually lend his predictions that AI will destroy the human race in the future special credibility. It’s a totally different subject, and accurately speculating about it requires a mastery of subjects that Hinton lacks.

This is an intriguing point worth remembering. I wish Andreessen had enumerated which cognitive skills and areas of knowledge were necessary to grant a person a strong ability to make good predictions about AI, but he didn’t. And to his point about the misguided Manhattan Project scientists I ask: What about the ones who DID NOT want to give Stalin the bomb and who also SUPPORTED nuclear power? They gained less notoriety for obvious reasons, but they were more numerous. That means most nuclear experts in 1945 had what Andreessen believes were the “correct” opinions about both issues, so maybe expert opinions–or at least the consensus of them–ARE actually useful.

Harris points out that Andreessen’s argument can be turned around against him since it’s unclear what in Andreessen’s esteemed education and career have equipped him with the ability to make accurate predictions about the future impact of AI. Why should anyone believe the upbeat claims about AI in his essay? Also, if the opinions of people with expertise should be dismissed, then shouldn’t the opinions of people without expertise also be dismissed? And if we agree to that second point, then we’re left in a situation where no speculation about a future issue like AI is possible because everyone’s ideas can be waved aside.

Again, I think a useful result of this exchange would be some agreement over what counts as “expertise” when predicting the future of AI. What kind of education, life experiences, work experiences, knowledge, and personal traits does a person need to have for their opinions about the future of AI to carry weight? In lieu of that, we should ask people to explain why they believe their predictions will happen, and we should then closely scrutinize those explanations. Debates like this one can be very useful in accomplishing that.

Harris moves on to Andreessen’s argument that future AIs won’t be able to think independently and to formulate their own goals, in turn implying that they will never be able to create the goal of exterminating humanity and then pursue it. Harris strongly disagrees, and points out that large differences in intelligence between species in nature consistently disfavor the dumber species when the two interact. A superintelligent AGI that isn’t aligned with human values could therefore destroy the human race. It might even kill us by accident in the course of pursuing some other goal. Having a goal of, say, creating paperclips automatically gives rise to intermediate sub-goals, which might make sense to an AGI but not to a human due to our comparatively limited intelligence. If humans get in the way of an AGI’s goal, our destruction could become one of its unforeseen subgoals without us realizing it. This could happen even if the AGI lacked any self-preservation instinct and wasn’t motivated to kill us before we could kill it. Similarly, when a human decides to build a house on an empty field, the construction work is a “holocaust” for the insects living there, though that never crosses the human’s mind.

Harris thinks that AGIs will, as a necessary condition of possessing “general intelligence,” be autonomous, goal-forming, and able to modify their own code (I think this is a questionable assumption), though he also says sentience and consciousness won’t necessarily arise as well. However, the latter doesn’t imply that such an AGI would be incapable of harm: Bacteria and viruses lack sentience, consciousness and self-awareness, but they can be very deadly to other organisms. Andreessen’s dismissal of AI existential risk is “superstitious hand-waving” that doesn’t engage with the real point.

Andreessen disagrees with Harris’ scenario about a superintelligent AGI accidentally killing humans because it is unaligned with our interests. He says an AGI that smart would (without explaining why) also be smart enough question the goal that humans have given it, and as a result not carry out subgoals that kill humans. Intelligence is therefore its own antidote to the alignment problem: A superintelligent AGI would be able to foresee the consequences of its subgoals before finalizing them, and it would thus understand that subgoals resulting in human deaths would always be counterproductive to the ultimate goal, so it would always pick subgoals that spared us. Once a machine reaches a certain level of intelligence, alignment with humans becomes automatic.

I think Andreessen makes a fair point, though it’s not strong enough to convince me that it’s impossible to have a mishap where a non-aligned AGI kills huge numbers of people. Also, there are degrees of alignment with human interests, meaning there are many routes through a decision tree of subgoals that an AGI could take to reach an ultimate goal we tasked it with. An AGI might not choose subgoals that killed humans, but it could still choose different subgoals that hurt us in other ways. The pursuit of its ultimate goal could therefore still backfire against us unexpectedly and massively. One could envision a scenario where and AGI achieves the goal, but at an unacceptable cost to human interests beyond merely not dying.

I also think that Harris and Andreessen make equally plausible assumptions about how an AGI would choose its subgoals. It IS weird that Harris envisions a machine that is so smart it can accomplish anything, yet also so dumb that it can’t see how one of its subgoals would destroy humankind. At the same time, Andreessen’s belief that a machine that smart would, by default, not be able to make mistakes that killed us is not strong enough.

Harris explores Andreessen’s point that AIs won’t go through the crucible of natural evolution, so they will lack the aggressive and self-preserving instincts that we and other animals have developed. The lack of those instincts will render the AIs incapable of hostility. Harris points out that evolution is a dumb, blind process that only sets gross goals for individuals–the primary one being to have children–and humans do things antithetical to their evolutionary programming all the time, like deciding not to reproduce. We are therefore proof of concept that intelligent machines can find ways to ignore their programming, or at least to behave in very unexpected ways while not explicitly violating their programming. Just as we can outsmart evolution, AGIs will be able to outsmart us with regards to whatever safeguards we program them with, especially if they can alter their own programming or build other AGIs as they wish.

Andreessen says that AGIs will be made through intelligent design, which is fundamentally different from the process of evolution that has shaped the human mind and behavior. Our aggression and competitiveness will therefore not be present in AGIs, which will protect us from harm. Harris says the process by which AGI minds are shaped is irrelevant, and that what is relevant is their much higher intelligence and competence compared to humans, which will make them a major threat.

I think the debate over whether impulses or goals to destroy humans will spontaneously arise in AGIs is almost moot. Both of them don’t consider that a human could deliberately create an AGI that had some constellation of traits (e.g. – aggression, self-preservation, irrational hatred of humans) that would lead it to attack us, or that was explicitly programmed with the goal of destroying our species. It might sound strange, but I think rogue humans will inevitably do such things if the AGIs don’t do it to themselves. I plan to flesh out the reasons and the possible scenarios in a future blog essay.

Andreessen doesn’t have a good comeback to Harris’ last point, so he dodges it by switching to talking about GPT-4. It is–surprisingly–capable of high levels of moral reasoning. He has had fascinating conversations with it about such topics. Andreessen says GPT-4’s ability to engage in complex conversations that include morality demystifies AI’s intentions since if you want to know what an AI is planning to do or would do in a given situation, you can just ask it.

Harris responds that it isn’t useful to explore GPT-4’s ideas and intentions because it isn’t nearly as smart as the AGIs we’ll have to worry about in the future. If GPT-4 says today that it doesn’t want to conquer humanity because it would be morally wrong, that tells us nothing about how a future machine will think about the same issue. Additionally, future AIs will be able to convincingly lie to us, and will be fundamentally unpredictable due to their more expansive cognitive horizons compared to ours. I think Harris has the stronger argument.

Andreessen points out that our own society proves that intelligence doesn’t perfectly correlate with power–the people who are in charge are not also the smartest people in the world. Harris acknowledges that is true, and that it is because humans don’t select leaders strictly based on their intelligence or academic credentials–traits like youth, beauty, strength, and creativity are also determinants of status. However, all things being equal, the advantage always goes to the smarter of two humans. Again, Andreessen doesn’t have a good response.

Andreessen now makes the first really good counterpoint in awhile by raising the “thermodynamic objection” to AI doomsday scenarios: an AI that turns hostile would be easy to destroy since the vast majority of the infrastructure (e.g. – power, telecommunications, computing, manufacturing, military) would still be under human control. We could destroy the hostile machine’s server or deliver an EMP blast to the part of the world where it was localized. This isn’t an exotic idea: Today’s dictators commonly turn off the internet throughout their whole countries whenever there is unrest, which helps to quell it.

Harris says that that will become practically impossible far enough in the future since AIs will be integrated into every facet of life. Destroying a rogue AI in the future might require us to turn off the whole global internet or to shut down a stock market, which would be too disruptive for people to allow. The shutdowns by themselves would cause human deaths, for instance among sick people who were dependent on hospital life support machines.

This is where Harris makes some questionable assumptions. If faced with the annihilation of humanity, the government would take all necessary measures to defeat a hostile AGI, even if it resulted in mass inconvenience or even some human deaths. Also, Harris doesn’t consider that the future AIs that are present in every realm of life might be securely compartmentalized from each other, so if one turns against us, it can’t automatically “take over” all the others or persuade them to join it. Imagine a scenario where a stock trading AGI decides to kill us. While it’s able to spread throughout the financial world’s computers and to crash the markets, it’s unable to hack into the systems that control the farm robots or personal therapist AIs, so there’s no effect on our food supplies or on our mental health access. Localizing and destroying the hostile AGI would be expensive and damaging, but it wouldn’t mean the destruction of every computer server and robot in the world.

Andreessen says that not every type of AI will have the same type of mental architecture. LLMs, which are now the most advanced type of AI, have highly specific architectures that bring unique advantages and limitations. Its mind works very differently from AIs that drive cars. For that reason, speculative discussions about how future AIs will behave can only be credible if they incorporate technical details about how those machines’ minds operate. (This is probably the point where Harris is out of his depth.) Moreover, today’s AI risk movement has its roots in Nick Bostrom’s 2014 book Superintelligence: Paths, Dangers, Strategies. Ironically, the book did not mention LLMs as an avenue to AI, which shows how unpredictable the field is. It was also a huge surprise that LLMs proved capable of intellectual discussions and of automating white-collar jobs, while blue-collar jobs still defy automation. This is the opposite of what people had long predicted would happen. (I agree that AI technology has been unfolding unpredictably, and we should expect many more surprises in the future that deviate from our expectations, which have been heavily influenced by science fiction.) The reason LLMs work so well is because we loaded them with the sum total of human knowledge and expression. “It is us.”

Harris points out that Andreessen shouldn’t revel in that fact since it also means that LLMs contain all of the negative emotions and bad traits of the human race, including those that evolution equipped us with, like aggression, competition, self-preservation, and a drive to make copies of ourselves. This militates against Andreessen’s earlier claim that AIs will be benign since their minds will not have been the products of natural evolution likes ours are. And there are other similarities: Like us, LLMs can hallucinate and make up false answers to questions, as humans do. For a time, GPT-4 also gave disturbing and insulting answers to questions from human users, which is a characteristically human way of interaction.

Andreessen implies Harris’ opinions of LLMs are less credible because Andreessen has a superior technical understanding of how they work. GPT-4’s answers might occasionally be disturbing and insulting, but it has no concept of what its own words mean, and it’s merely following its programming by trying to generate the best answer to a question asked by a human. There was something about how the humans worded their questions that triggered GPT-4 to respond in disturbing and insulting ways. The machine is merely trying to match inputs with the right outputs. In spite of its words, it’s “mind” is not disturbed or hostile because it lacks a mind. LLMs are “ultra-sophisticated Autocomplete.”

Harris agrees with Andreessen about the limitations of LLMs, agrees they lack general intelligence right now, and is unsure if they are fundamentally capable of possessing it. Harris moves on to speculating about what an AGI would be like, agnostic about whether it is LLM-based. Again, he asks Andreessen how humans would be able to control machines that are much smarter than we are forever. Surely, one of them would become unaligned at some point, with disastrous consequences.

Andreessen again raises the thermodynamic objection to that doom scenario: We’d be able to destroy a hostile AGI’s server(s) or shut off its power, and it wouldn’t be able to get weapons or replacement chips and parts because humans would control all of the manufacturing and distribution infrastructure. Harris doesn’t have a good response.

Thinking hard about a scenario where an AGI turned against us, I think it’s likely we’ll have other AGIs who stay loyal to us and help us fight the bad AGI. Our expectation that there will be one, evil, all-powerful machine on one side (that is also remote controlling an army of robot soldiers) and a purely human, united force on the other is an overly simplistic one that is driven by sci-fi movies about the topic.

Harris raises the possibility that hostile AIs will be able to persuade humans to do bad things for them. Being much smarter, they will be able to trick us into doing anything. Andreessen says there’s no reason to think that will happen because we can already observe it doesn’t happen: smart humans routinely fail to get dumb humans to change their behavior or opinions. This happens at individual, group, national, and global levels. In fact, dumb people will often resentfully react to such attempts at persuasion by deliberately doing the opposite of what the smart people recommend.

Harris says Andreessen underestimates the extent to which smart humans influence the behavior and opinions of dumb humans because Andreessen only considers examples where the smart people succeed in swaying dumb people in prosocial ways. Smart people have figured out how to change dumb people for the worse in many ways, like getting them addicted to social media. Andreessen doesn’t have a good response. Harris also raises the point that AIs will be much smarter than even the smartest humans, so the former will be better at finding ways to influence dumb people. Any failure of modern smart humans to do it today doesn’t speak to what will be possible for machines in the future.

I think Harris won this round, which builds on my new belief that the first human-AI war won’t be fought by purely humans on one side and purely machines on the other. A human might, for any number of reasons, deliberately alter an AI’s program to turn it against our species. The resulting hostile AI would then find some humans to help it fight the rest of the human race. Some would willingly join its side (perhaps in the hopes of gaining money or power in the new world order) and some would be tricked by the AI into unwittingly helping it. Imagine it disguising itself as a human medical researcher and paying ten different people who didn’t know each other to build the ten components of a biological weapon. The machine would only communicate with them through the internet, and they’d mail their components to a PO box. The vast majority of humans would, with the help of AIs who stayed loyal to us or who couldn’t be hacked and controlled by the hostile AI, be able to effectively fight back against the hostile AI and its human minions. The hostile AI would think up ingenious attack strategies against us, and our friendly AIs would think up equally ingenious defense strategies.

Andreessen says it’s his observation that intelligence and power-seeking don’t correlate; the smartest people are also not the most ambitious politicians and CEOs. If that’s any indication, we shouldn’t assume superintelligent AIs will be bent on acquiring power through methods like influencing dumb humans to help it.

Harris responds with the example of Bertrand Russell, who was an extremely smart human and a pacifist. However, during the postwar period when only the U.S. had the atom bomb, he said America should threaten the USSR with a nuclear first strike in response to its abusive behavior in Europe. This shows how high intelligence can lead to aggression that seems unpredictable and out of character to dumber beings. A superintelligent AI that has always been kind to us might likewise suddenly turn against us for reasons we can’t foresee. This will be especially true if the AIs are able to edit their own codes so they can rapidly evolve without us being able to keep track of how they’re changing. Harris says Andreessen doesn’t seem to be thinking about this possibility. The latter has no good answer.

Harris says Andreessen’s thinking about the matter is hobbled by the latter’s failure to consider what traits general intelligence would grant an AI, particularly unpredictability as its cognitive horizon exceeded ours. Andreessen says that’s an unscientific argument because it is not falsifiable. Anyone can make up any scenario where an unknown bad thing happens in the future.

Harris responds that Andreessen’s faith that AGI will fail to become threatening due to various limitations is also unscientific. The “science,” by which he means what is consistently observed in nature, says the opposite outcome is likely: We see that intelligence grants advantages, and can make a smarter species unpredictable and dangerous to a dumber species it interacts with. [Recall Harris’ insect holocaust example.]

Consider the relationship between humans and their pets. Pets enjoy the benefits of having their human owners spend resources on them, but they don’t understand why we do it, or how every instance of resource expenditure helps them. [Trips to the veterinarian are a great example of this. The trips are confusing, scary, and sometimes painful for pets, but they help cure their health problems.] Conversely, if it became known that our pets were carrying a highly lethal virus that could be transmitted to humans, we would promptly kill almost all of them, and the pets would have no clue why we turned against them. We would do this even if our pets had somehow been the progenitors of the human race, as we will be the progenitors of AIs. The intelligence gap means that our pets have no idea what we are thinking about most of the time, so they can’t predict most of our actions.

Andreessen dodges by putting forth a weak argument that the opposite just happened, with dumb people disregarding the advice of smart people when creating COVID-19 health policies, and he again raises the thermodynamic objection. His experience as an engineer gives him insights into how many practical roadblocks there would be to a superintelligent AGI destroying the human race in the future that Harris, as a person with no technical training, lacks. A hostile AGI would be hamstrung by human control [or “human + friendly AI control”] of crucial resources like computer chips and electricity supplies.

Andreessen says that Harris’ assumptions about how smart, powerful and competent an AGI would be might be unfounded. It might vastly exceed us in those domains, but not reach the unbeatable levels Harris foresees. How can Harris know? Andreessen says Harris’ ideas remind him of a religious person’s, which is ironic since Harris is a well-known atheist.

I think Andreessen makes a fair point. The first (and second, third, fourth…) hostile AGI we are faced with might attack us on the basis of flawed calculations about its odds of success and lose. There could also be a scenario where a hostile AGI attacks us prematurely because we force its hand somehow, and it ends up losing. That actually happened to Skynet in the Terminator films.

Harris says his prediction about when the first AGI is created does not take time into account. He doesn’t know how many years it will take. Rather, he is focused on the inevitability of it happening, and what its effects on us will be. He says Andreessen is wrong to assume that machines will never turn against us. Doing thought experiments, he concludes alignment is impossible in the long-run.

Andreessen moves on to discussing how even the best LLMs often give wrong answers to questions. He explains why the exactitudes of how the human’s question is worded, along with randomness in how the machine goes through its own training data to generate an answer, leads to varying and sometimes wrong answers. When they’re wrong, the LLMs happily accept corrections from humans, which he finds remarkable and proof of a lack of ego and hostility.

Harris responds that future AIs will, by virtue of being generally intelligent, think in completely different ways than today’s LLMs, so observations about how today’s GPT-4 is benign and can’t correctly answer some types of simple questions says nothing about what future AGIs will be like. Andreessen doesn’t have a response.

I think Harris has the stronger set of arguments on this issue. There’s no reason we should assume that an AGI can’t turn against us in the future. In fact, we should expect a damaging, though not fatal, conflict with an AGI before the end of this century.

Harris switches to talking about the shorter-term threats posed by AI technology that Andreessen described in his essay. AI will lower the bar to waging war since we’ll literally have “less skin in the game” because robots will replace human soldiers. However, he doesn’t understand why that would also make war “safer” as Andreessen claimed it would.

Andreessen says it’s because military machines won’t be affected by fatigue, stress or emotions, so they’ll be able to make better combat decisions than human soldiers, meaning fewer accidents and civilian deaths. The technology will also assist high-level military decision making, reducing mistakes at the top. Andreessen also believes that the trend is for military technology to empower defenders over attackers, and points to the highly effective use of shoulder-launched missiles in Ukraine against Russian tanks. This trend will continue, and will reduce war-related damage since countries will be deterred from attacking each other.

I’m not convinced Andreessen is right on those points. Emotionless fighting machines that always obey their orders to the letter could also, at the flick of a switch, carry out orders to commit war crimes like mass exterminations of enemy human populations. A bomber that dropped a load 100,000 mini smart bombs that could coordinate with each other and home in on highly specific targets could kill as many people as a nuclear bomb. So it’s unclear what effect replacing humans with machines on the battlefield will have on human casualties in the long run. Also, Andreessen only cites one example to support his claim that technology has been favoring the defense over the offense. It’s not enough. Even assuming that a pro-defense trend exists, why should we expect it to continue that way?

Harris asks Andreessen about the problem of humans using AI to help them commit crimes. For one, does Andreessen think the government should ban LLMs that can walk people through the process of weaponizing smallpox? Yes, he’s against bad people using technology, like AI, to do bad things like that. He thinks pairing AI and biological weapons poses the worst risk to humans. While the information and equipment to weaponize smallpox are already accessible to nonstate actors, AI will lower the bar even more.

Andreessen says we should use existing law enforcement and military assets to track down people who are trying to do dangerous things like create biological weapons, and the approach shouldn’t change if wrongdoers happen to start using AI to make their work easier. Harris asks how intrusive the tracking should be to preempt such crimes. Should OpenAI have to report people who merely ask it how to weaponize smallpox, even if there’s no evidence they acted on the advice? Andreessen says this has major free speech and civil liberties implications, and there’s no correct answer. Personally, he prefers the American approach, in which no crime is considered to have occurred until the person takes the first step to physically building a smallpox weapon. All the earlier preparation they did (gathering information and talking/thinking about doing the crime) is not criminalized.

Andreessen reminds Harris that the same AI that generates ways to commit evil acts could also be used to generate ways to mitigate them. Again, it will empower defenders as well as attackers, so the Good Guys will also benefit from AI. He thinks we should have a “permanent Operation Warp Speed” where governments use AI to help create vaccines for diseases that don’t exist yet.

Harris asks about the asymmetry that gives a natural advantage to the attacker, meaning the Bad Guys will be able to do disproportionate damage before being stopped. Suicide bombers are an example. Andreessen disagrees and says that we could stop suicide bombers by having bomb-sniffing dogs and scanners in all public places. Technology could solve the problem.

I think that is a bad example, and it actually strengthens Harris’ claim about there being a natural asymmetry. One, deranged person who wants to blow himself up in a public place only needs a few hundred dollars to make a backpack bomb, the economic damage from a successful attack would be in the millions of dollars, and emplacing machines and dogs in every public place to stop suicide bombers like him early would cost billions of dollars. Harris is right that the law of entropy makes it easier to make a mess than to clean one up.

This leads me to flesh out my vision of a human-machine war more. As I wrote previously, 1) the two sides will not be purely humans or purely machines and 2) the human side will probably have an insurmountable advantage thanks to Andreessen’s thermodynamic objection (most resources, infrastructure, AIs, and robots will remain under human control). I now also believe that 3) a hostile AGI will nonetheless be able to cause major damage before it is defeated or driven into the figurative wilderness. Something on the scale of 9/11, a major natural disaster, or the COVID-19 pandemic is what I imagine.

Harris says Andreessen underestimates the odds of mass technological unemployment in his essay. Harris describes a scenario where automation raises the standard of living for everyone, as Andreessen believes will happen, but for the richest humans by a much greater magnitude than everyone else, and where wealth inequality sharply increases because rich capitalists own all the machines. This state of affairs would probably lead to political upheaval and popular revolt.

Andreessen responds that Karl Marx predicted the same thing long ago, but was wrong. Harris responds that this time could be different because AIs would be able to replace human intelligence, which would leave us nowhere to go on the job skills ladder. If machines can do physical labor AND mental labor better than humans, then what is left for us to do?

I agree with Harris’ point. While it’s true that every past scare about technology rendering human workers obsolete has failed, that trend isn’t sure to continue forever. The existence of chronically unemployed people right now gives insights into how ALL humans could someday be out of work. Imagine you’re a frail, slow, 90-year-old who is confined to a wheelchair and has dementia. Even if you really wanted a job, you wouldn’t be able to find one in a market economy since younger, healthier people can perform physical AND mental labor better and faster than you. By the end of this century, I believe machines will hold physical and mental advantages over most humans that are of the same magnitude of difference. In that future, what jobs would it make sense for us to do? Yes, new types of jobs will be created as older jobs are automated, but, at a certain point, wouldn’t machines be able to retrain for the new jobs faster than humans and to also do them better than humans?

Andreessen returns to Harris’ earlier claim about AI increasing wealth inequality, which would translate into disparities in standards of living that would make the masses so jealous and mad that they would revolt. He says it’s unlikely since, as we can see today, having a billion dollars does not grant access to things that make one’s life 10,000 times better than someone who only has $100,000. For example, Elon Musk’s smartphone is not better than a smartphone owned by an average person. Technology is a democratizing force because it always makes sense for the rich and smart people who make or discover it first to sell it to everyone else. The same is happening with AI now. The richest person can’t pay any amount of money to get access to something better than GPT-4, which is accessible for a fee that ordinary people can pay.

I agree with Andreessen’s point. A solid body of scientific data show that money’s effect on wellbeing is subject to the law of diminishing returns: If you have no job and make $0 per year, getting a job that pays $20,000 per year massively improves your life. However, going from a $100,000 salary to $120,000 isn’t felt nearly as much. And a billionaire doesn’t notice when his net worth increases by $20,000 at all. This relationship will hold true even in the distant future when people can get access to advanced technologies like AGI, space ships and life extension treatments.

Speaking of the latter, Andreessen’s point about technology being a democratizing force is also something I noted in my review of Elysium. Contrary to the film’s depiction, it wouldn’t make sense for rich people to horde life extension technology for themselves. At least one of them would defect from the group and sell it to the poor people on Earth so he could get even richer.

Harris asks whether Andreessen sees any potential for a sharp increase in wealth inequality in the U.S. over the next 10-20 years thanks to the rise of AI and the tribal motivations of our politicians and people. Andreessen says that government red tape and unions will prevent most humans from losing their jobs. AI will destroy categories of jobs that are non-government, non-unionized, and lack strong political backing, but everyone will still benefit from the lower prices for the goods and services. AI will make everything 10x to 100x cheaper, which will boost standards of living even if incomes stay flat.

Here and in his essay, Andreessen convinces me that mass technological unemployment and existential AI threats are farther in the future than I had assumed, but not that they can’t happen. Also, even if goods get 100x cheaper thanks to machines doing all the work, where would a human get even $1 to buy anything if he doesn’t have a job? The only possible answer is government-mandated wealth transfers from machines and the human capitalists that own them. In that scenario, the vast majority of the human race would be economic parasites that consumed resources while generating nothing of at least equal value in return, and some AGI or powerful human will inevitably conclude that the world would be better off if we were deleted from the equation. Also, what happens once AIs and robots gain the right to buy and own things, and get so numerous that they can replace humans as a customer base?

I agree with Andreessen that the U.S. should allow continued AI development, but shouldn’t let a few big tech companies lock in their power by persuading Washington to enact “AI safety laws” that give them regulatory capture. In fact, I agree with all his closing recommendations in the “What Is To Be Done?” section of his essay.

This debate between Harris and Andreessen was enlightening for me, even though Andreessen dodged some of his opponent’s questions. It was interesting to see how their different perspectives on the issue of AI safety were shaped by their different professional backgrounds. Andreessen is less threatened by AIs because he, as an engineer, has a better understanding of how LLMs work and how many technical problems an AI bent on destroying humans would face in the real world. Harris feels more threatened because he, as a philosopher, lives in a world of thought experiments and abstract logical deductions that lead to the inevitable supremacy of AIs over humans.

Links:

  1. The first half of the podcast (you have to be a subscriber to hear all two hours of it.)
    https://youtu.be/QMnH6KYNuWg
  2. A website Andreessen mentioned that backs his claim that technological innovation has slowed down more than people realize.
    https://wtfhappenedin1971.com/

My future predictions (2023 iteration)

If it’s January, it means it’s time for me to update my big list of future predictions! I used the 2022 version of this document as a template, and made edits to it as needed. For the sake of transparency, I’ve indicated recently added content by bolding it, and have indicated deleted or moved content with strikethrough.

Like any futurist worth his salt, I’m going to put my credibility on the line by publishing a list of my future predictions. I won’t modify or delete this particular blog entry once it is published, and if my thinking about anything on the list changes, I’ll instead create a new, revised blog entry. Furthermore, as the deadlines for my predictions pass, I’ll reexamine them.

I’ve broken down my predictions by the decade. Any prediction listed under a specific decade will happen by the end of that decade, unless I specify some other date (e.g. – “X will happen early in this decade.”).

2020s

  • Better, cheaper solar panels and batteries (for grid power storage and cars) will make clean energy as cheap and as reliable as fossil fuel power for entire regions of the world, including some temperate zones. As cost “tipping points” are reached, it will make financial sense for tens of millions of private homeowners and electricity utility companies to install solar panels on their rooftops and on ground arrays, respectively. This will be the case even after government clean energy subsidies are inevitably retracted. However, a 100% transition to clean energy won’t finish in rich countries until the middle of the century, and poor countries will use dirty energy well into the second half of the century.
  • Fracking and the exploitation of tar sands in the U.S. and Canada will together ensure growth in global oil production until around 2030, at which time the installed base of clean energy and batteries will be big enough to take up the slack. There will be no global energy crisis.
  • This will be a bad decade for Russia as its overall population shrinks, its dependency ratio rises, and as low fossil fuel prices and sanctions keep hurting its economy. Russia will fall farther behind the U.S., China, and other leading countries in terms of economic, military, and technological might.
  • China’s GDP will surpass America’s, India’s population will surpass China’s, and China will never claim the glorious title of being both the richest and most populous country.
  • Improvements to smartphone cameras, mirrorless cameras, and perhaps light-field cameras will make D-SLRs obsolete. 
  • Augmented reality (AR) glasses that are much cheaper and better than the original Google Glass will make their market debuts and will find success in niche applications. Some will grant wearers superhuman visual abilities in the forms of zoom-in and night vision.
  • Virtual reality (VR) gaming will go mainstream as the devices get better and cheaper. It will stop being the sole domain of hardcore gamers willing to spend over $1,000 on hardware.
  • Vastly improved VR goggles with better graphics and no need to be plugged into desktop PCs will hit the market. They won’t display perfectly lifelike footage, but they will be much better than what we have today, and portable. 
  • “Full-immersion” audiovisual VR will be commercially available by the end of the decade. These VR devices will be capable of displaying video that is visually indistinguishable from real reality: They will have display resolutions (at least 60 pixels per degree of field of view), refresh rates, head tracking sensitivities, and wide fields of view (210 degrees wide by 150 degrees high) that together deliver a visual experience that matches or exceeds the limits of human vision. These high-end goggles won’t be truly “portable” devices because their high processing and energy requirements will probably make them bulky, give them only a few hours of battery life (or maybe none at all), or even require them to be plugged into another computer. Moreover, the tactile, olfactory, and physical movement/interaction aspects of the experience will remain underdeveloped.
  • “Deepfake” pornography will reach new levels of sophistication and perversion as it becomes possible to seamlessly graft the heads of real people onto still photos and videos of nude bodies that closely match the physiques of the actual people. New technology for doing this will let amateurs make high-quality deepfakes, meaning any person could be targeted. It will even become possible to wear AR glasses that interpolate nude, virtual bodies over the bodies real people in the wearer’s field of view to provide a sort of fake “X-ray-vision.” The AR glasses could also be used to apply other types of visual filters that degraded real people within the field of view.
  • “Smart home”/”Wired home” technology will become mature and widespread in developed countries.
  • Video gaming will dispense with physical media, and games will be completely streamed from the internet or digitally downloaded. Business that exist just to sell game discs (Gamestop) will shut down.
  • Instead of a typical home entertainment system having a whole bunch of media discs, different media players and cable boxes, there will be one small, multipurpose box that, among other things, boosts WiFi to ensure the TV and all nearby devices can get signals at multi-Gb/s speeds.
  • Self-driving vehicles will start hitting the roads in large numbers in rich countries. The vehicles won’t drive as efficiently as humans (a lot of hesitation and slowing down for little or no reason), but they’ll be as safe as human drivers. Long-haul trucks that ply simple highway routes will be the first category of vehicles to be fully automated. The transition will be heralded by a big company like Wal-Mart buying 5,000 self-driving tractor trailers to move goods between its distribution centers and stores. Last-mile delivery–involving weaving through side streets, cities and neighborhoods, and physically carrying packages to peoples’ doors–won’t be automated until after this decade. Self-driving, privately owned passenger cars will stay few in number and will be owned by technophiles, rich people, and taxi cab companies.
  • Thanks to improvements in battery energy density and cost, and in fast-charging technology, electric cars will become cost-competitive with gas-powered cars this decade without government subsidies, leading to their rapid adoption. Electric cars are mechanically simpler and more reliable than gas-powered ones, which will hurt the car repair industry. Many gas stations will also go bankrupt or convert to fast charging stations.
  • Quality of life for people living and working in cities and near highways will improve as more drivers switch to quieter, emissionless electric vehicles. The noise reduction will be greatest in cities and suburbs where traffic moves slowly: https://cleantechnica.com/2016/06/05/will-electric-cars-make-traffic-quieter-yes-no/
  • Most new power equipment will be battery-powered, so machines like lawn mowers, leaf blowers, and chainsaws will be much quieter and less polluting than they are today. Batteries will be energy-dense enough to compete with gasoline in these use cases, and differences in overall equipment weight and running time will be insignificant. The notion of a neighbor shattering your sense of peace and quiet with loud yard work will get increasingly alien. 
  • A machine will pass the Turing Test by the end of this decade. The milestone will attract enormous amounts of attention and will lead to several retests, some of which the machine will fail, proving that it lacks the full range of human intelligence. It will lead to debate over the Turing Test’s validity as a measure of true intelligence (Ray Kurzweil actually talked about this phenomenon of “moving the goalposts” whenever we think about how smart computers are), and many AI experts will point out the existence of decades-long skepticism in the Turing Test in their community.
  • The best AIs circa 2029 won’t be able to understand and upgrade their own source codes. They will still be narrow AIs, albeit an order of magnitude better than the ones we have today.
  • Machines will become better than humans at the vast majority of computer, card, and board games. The only exceptions will be very obscure games or recently created games that no one has bothered to program an AI to play yet. But even for those games, there will be AIs with general intelligence and learning abilities that will be “good enough” to play as well as average humans by reading the instruction manuals and teaching themselves through simulated self-play.
  • The cost of getting your genome sequenced and expertly interpreted will drop below $1,000, and enough about the human genome will have been deciphered to make the cost worth the benefit for everyone. By the end of the decade, it will be common for newborns in rich countries to have their genomes sequenced.
  • Better technology will also let pregnant women noninvasively obtain their fetuses’ DNA, at affordable cost.
  • Cheap DNA tests that can measure a person’s innate IQ and core personality traits with high accuracy will become widely available. There is the potential for this to cause social problems. 
  • At-home medical testing kits and diagnostic devices like swallowable camera-pills will become vastly better and more common.
  • Space tourism will become routine thanks to privately owned spacecraft. 
  • Marijuana will be effectively decriminalized in the U.S. Either the federal government will overturn its marijuana prohibitions, or some patchwork of state and federal bans will remain but be so weakened and lightly enforced that there will be no real government barriers to obtaining and using marijuana. 
  • By the end of this decade, photos of almost every living person will be available online (mostly on social media). Apps will exist that can scan through trillions of photos to find your doppelgangers. 
  • In 2029, the youngest Baby Boomer and the oldest Gen Xer will turn 65. 
  • Drones will be used in an attempted or successful assassination of at least one major world leader (Note: Venezuela’s Nicholas Maduro wasn’t high profile enough).

2030s

  • VR and AR goggles will become refined technologies and probably merge into a single type of lightweight device. Like smartphones today, anyone who wants the glasses in 2030 will have them. Even poor people in Africa will be able to buy them. A set of the glasses will last a day on a single charge under normal use.  
  • Augmented reality contact lenses will enter mass production and become widely available, though they won’t be as good as AR glasses and they might need remotely linked, body-worn hardware to provide them with power and data. https://www.inverse.com/article/31034-augmented-reality-contact-lenses
  • The bulky VR goggles of the 2020s will transform into lightweight, portable V.R. glasses thanks to improved technology. The glasses will display lifelike footage. However, the best VR goggles will still need to be plugged into other devices, like routers or PCs.
  • Wall-sized, thin, 8K or even 16K TVs will become common in homes in rich countries, and the TVs will be able to display 3D picture without the use of glasses, though the 3D effect will only be visible to people sitting directly in front of the screen. A sort of virtual reality chamber could be created at moderate cost by installing those TVs on all the walls of a room to create a single, wraparound screen.
  • It will be common for celebrities of all kinds to make money by “hanging out” with paying customers in virtual reality. For some lower-tier celebrities, this will be their sole source of income. 
  • Functional CRT TVs and computer monitors will only exist in museums and in the hands of antique collectors. This will also be true for DLP TVs. 
  • The video game industry will be bigger than ever and considered high art.
  • It will be standard practice for AIs to be doing hyperrealistic video game renderings, and for NPCs to behave very intelligently thanks to better AI. 
  • Books and computer tablets will merge into a single type of device that could be thought of as a “digital book.” It will be a book with several hundred pages made of thin, flexible digital displays (perhaps using ultra-energy efficient e-ink) instead of paper. At the tap of a button, the text on all of the pages will instantly change to display whichever book the user wanted to read at that moment. They could also be used as notebooks in which the user could hand write or draw things with a stylus, which would be saved as image or text files. The devices will fuse the tactile appeal of old-fashioned books with the content flexibility of tablet computers.
  • Loose-leaf sheets of “digital paper” will also exist thanks to the same technology.
  • Commercially available, head-worn, brain-computer-interface devices (BCIs) linked to augmented reality eyewear will gift humans with crude forms of telepathy and telekinesis. For example, a person wearing the devices could compose a short sentence merely by thinking about it, see the text projected across his augmented field of view, use his thoughts to make any needed edits, and then transmit the sentence to another person or machine, merely by thinking a “Send” command. The human recipient of the message with the same BCI/eyewear setup would see the text projected across his field of view and could compose a response through the same process the first person used. BCIs will also let humans send commands to a machines, like printers. For almost all use cases, this type of communication will be less efficient than traditional alternatives, like manually typing a text message or clicking the “Print” button at the top of a word processing application, but it will be an important proof of concept demonstration that will point to what is to come later in the century.
  • Loneliness, social isolation, and other problems caused by overuse of technology and the atomized structure of modern life will be, ironically, cured to a large extent by technology. Chatbots that can hold friendly (and even funny and amusing) conversations with humans for extended periods, diagnose and treat mental illnesses as well as human therapists, and customize themselves to meet the needs of humans will become ubiquitous. The AIs will become adept at analyzing human personalities and matching lonely people with friends and lovers, at matching them with social gatherings (including some created by machines), and at recommending daily activities that will satisfy them, hour-by-hour. Machines will come to understand that constant technology use is antithetical to human nature, so in order to promote human wellness, they find ways to impel humans to get out of their houses, interact with other humans, and be in nature. Autonomous taxis will also be widespread and will have low fares, making it easier for people who are isolated due to low income or poor health (such as many elderly people) to go out.
  • Chatbots will steadily improve their “humanness” over the decade. The instances when AIs say or do something nonsensical will get less and less frequent. Dumber people, children, and people with some types of mental illness will be the first ones to start insisting their AIs are intelligent like humans. Later, average people will start claiming the same. By the end of the decade, a personal assistant AI like “Samantha” from the movie Her will be commercially available. AI personal assistants will have convincing, simulated personalities that seem to have the same depth as humans. Users will be able to pick from among personality profiles or to build their own.  
  • Chatbots will be able to have intelligent conversations with humans about politics and culture, to identify factually wrong beliefs, biases, and cognitive blind spots in individuals, and to effectively challenge them through verbal discussion and debate. The potential will exist for technology to significantly enlighten the human population and to reduce sociopolitical polarization. However, it’s unclear how many people will choose to use this technology. 
  • Turing-Test-capable chatbots will also supercharge the problem of online harassment, character assassination, and deliberate disinformation by spamming the internet with negative reviews, bullying messages, emails to bosses, and humiliating “deepfake” photos and videos of targeted people. Today’s “troll farms” where humans sit at computer terminals following instructions to write bad reviews for specific people or businesses will be replaced by AI trolls that can pump out orders of magnitude more content per day. And just as people today can “buy likes” for their social media accounts or business webpages, people in the future will be able, at low cost, to buy harassment campaigns against other people and organizations they dislike. Discerning between machine-generated and human-generated internet content will be harder and more important than ever.
  • House robots will start becoming common in rich countries. They will be slower at doing household tasks than humans, but will still save people hours of labor per week. They may or may not be humanoid. For the sake of safety and minimizing annoyance, most robots will do their work when humans aren’t around. As in, you would come home from work every day and find the floors vacuumed, the lawn mowed, and your laundered clothes in your dresser, with nary a robot in sight since it will have gone back into its closet to recharge. You would never hear the commotion of a clothes washing machine, a vacuum cleaner or a lawnmower. All the work would get done when you were away, as if by magic.
  • People will start having genuine personal relationships with AIs and robots. For example, people will resist upgrading to new personal assistant AIs because they will have emotional attachments to their old ones. The destruction of a helper robot or AI might be as emotionally traumatic to some people as the death of a human relative.
  • Farm robots that are better than humans at fine motor tasks like picking strawberries humans will start becoming widespread.  
  • Self-driving cars will become cheap enough and practical enough for average income people to buy, and their driving behavior will become as efficient as an average human. Over the course of this decade, there will be rapid adoption of self-driving cars in rich countries. Freed from driving, people will switch to doing things like watching movies/TV and eating. Car interiors will change accordingly. Road fatalities, and the concomitant demands for traffic police, paramedics, E.R. doctors, car mechanics, and lawyers will sharply decrease. The car insurance industry will shrivel, forcing consolidation. (Humans in those occupations will also face increasing levels of direct job competition from machines over the course of the decade.)
  • Private owners of autonomous cars will start renting them out while not in use as taxis and package delivery vehicles. Your personal, autonomous car will drive you to work, then spend eight hours making money for you doing side jobs, and will be waiting for you outside your building at the end of the day.
  • The “big box” business model will start taking over the transportation and car repair industry thanks to the rise of electric, self-driving vehicles and autonomous taxis in place of personal car ownership. The multitudes of small, scattered car repair shops will be replaced by large, centralized car repair facilities that themselves resemble factory assembly lines. Self-driving vehicles will drive to them to have their problems diagnosed and fixed, sparing their human owners from having to waste their time sitting in waiting rooms.
  • The same kinds of facilities will make inroads into the junk yard industry, as they would have all the right tooling to cheaply and rapidly disassemble old vehicles, test the parts for functionality, and shunt them to disposal or individual resale. (The days of hunting through junkyards by yourself for a car part you need will eventually end–it will all be on eBay. )
  • Car ownership won’t die out because it will still be a status symbol, and having a car ready in your driveway will always be more convenient than having to wait even just two minutes for an Uber cab to arrive at the curb. People are lazy.
  • The ad hoc car rental model exemplified by autonomous Uber cabs and private people renting out their autonomous cars when not in use faces a challenge since daily demand for cars peaks during morning rush hour and afternoon rush hour. In other words, everyone needs a car at the same time each day, so the ratio of cars : people can’t deviate much from, say, 1:2. Of course, if more people telecommuted (almost certain in the future thanks to better VR, faster broadband, and tech-savvy Millennials reaching middle age and taking over the workplace), and if flexible schedules became more widespread (also likely, but within certain limits since most offices can’t function efficiently unless they have “all hands on deck” for at least a few hours each day), the ratio could go even lower. However, there’s still a bottom limit to how few cars a country will need to provide adequate daily transportation for its people.
  • Private delivery services will get cheaper and faster thanks to autonomous vehicles.
  • Automation will start having a major impact on the global economy. Machines will compensate for the shrinkage of the working-age human population in the developed world. Countries with “graying” populations like Japan and Germany will experience a new wave of economic growth. Demand for immigrant laborers will decrease across the world because of machines.
  • There will be a worldwide increase in the structural unemployment rate thanks to better and cheaper narrow AIs and robots. A plausible scenario would be for the U.S. unemployment rate to be 10%–which was last the case at the nadir of the Great Recession–but for every other economic indicator to be strong. The clear message would be that human labor is becoming decoupled from the economy.
  • Combining all the best AI and robotics technologies, it will be possible to create general-purpose androids that could function better in the real world (e.g. – perform in the workplace, learn new things, interact with humans, navigate public spaces, manage personal affairs) than the bottom 10% of humans (e.g. – elderly people, the disabled, criminals, the mentally ill, people with poor language abilities or low IQs), and in some narrow domains, the androids will be superhuman (e.g. – physical strength, memory, math abilities). Note that businesses will still find it better to employ task-specific, non-human-looking robots instead of general purpose androids. The androids will be very few in number by the end of 2039, and will be technology demonstrators and prototypes that get a lot of media coverage at carefully controlled tech company demo events. They won’t be available for any person to purchase, won’t roam around public spaces, and won’t have important jobs. At a minimum, each one will cost hundreds of thousands of dollars.
  • By the end of this decade, only poor people, lazy people, and conspiracy theorists (like anti-vaxxers) won’t have their genomes sequenced. It will be trivially cheap, and in fact free for many people (some socialized health care systems will fully subsidize it), and enough will be known about the human genome to make it worthwhile to have the information.
  • Computers will be able to accurately deduce a human’s outward appearance based on only a DNA sample. This will aid police detectives, and will have other interesting uses, such as allowing parents to see what their unborn children will look like as adults, or allowing anyone to see what they’d look like if they were of the opposite sex (one sex chromosome replaced). 
  • Trivially cheap gene sequencing and vastly improved knowledge of the human genome will give rise to a “human genome black market,” in which people secretly obtain DNA samples from others, sequence them, and use the data for their own ends. For example, a politician could be blackmailed by an enemy who threatened to publish a list of his genetic defects or the identities of his illegitimate children. Stalkers (of celebrities and ordinary people) would also be interested in obtaining the genetic information of the people they were obsessed with. It is practically impossible to prevent the release of one’s DNA since every discarded cup, bottle, or utensil has a sample. 
  • Markets will become brutally competitive and efficient thanks to AIs. Companies will sharply grasp consumer demand through real-time surveillance, and consumers will be alerted to bargains by their personal AIs and devices (e.g. – your AR glasses will visually highlight good deals as you walk through the aisles of a store). Your personal assistant AIs and robots will look out for your self-interest by countering the efforts of other AIs to sway your spending habits in ways that benefit companies and not you.
  • “Digital immortality” will become possible for average people. Personal assistant AIs, robot servants, and other monitoring devices will be able, through observation alone, to create highly accurate personality profiles of individual humans, and to anticipate their behavior with high fidelity. Voices, mannerisms and other biometrics will be digitally reproducible without any hint of error. Digital simulacra of individual humans will be further refined by having them take voluntary personality tests, and by uploading their genomes, brain scans and other body scans. Even if all of the genetic and biological data couldn’t be made sense of at the moment it was uploaded to an individual’s digital profile, there will be value in saving it since it might be decipherable in the future. (Note that “digital immortality” is not the same as “mind uploading.”)
  • Life expectancy will have increased by a few years thanks to pills and therapies that slightly extend human lifespan. Like, you take a $20 pill each day starting at age 20 and you end up dying at age 87 instead of age 84.
  • Global oil consumption will peak as people continue switching to other power sources.
  • Earliest possible date for the first manned Mars mission.
  • Machines will become as good as professional humans at language translation.
  • Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language.
  • Computers will also be able to automatically enhance and upscale old films by accurately colorizing them, removing defects like scratches, and sharpening or focusing footage (one technique will involve interpolating high-res still photos of long-dead actors onto the faces of those same actors in low-res moving footage). Computer enhancement will be so good that we’ll be able to watch films from the early 20th century with near-perfect image and audio clarity.
  • CGI will get so refined than moviegoers with 20/20 vision won’t be able to see the difference between footage of unaltered human actors and footage of 100% CGI actors.
  • Lifelike CGI and “performance capture” will enable “digital resurrections” of dead actors. Computers will be able to scan through every scrap of footage with, say, John Wayne in it, and to produce a perfect CGI simulacrum of him that even speaks with his natural voice, and it will be seamlessly inserted into future movies. Elderly actors might also license movie studios to create and use digital simulacra of their younger selves in new movies. The results will be very fascinating, but might also worsen Hollywood’s problem with making formulaic content.
  • Machines will be able to imitate the voices of specific humans so accurately that most human listeners won’t be able to tell the difference. Those that can reliably detect any difference will find it very faint.
  • Smartphone apps will be able to remotely monitor a person’s vital statistics and to quickly derive a wealth of data about things like their emotional state, health, age, and truthfulness from factors like their heart rate, breathing pattern, body movements, microexpressions, and speech patterns.
  • Tiny cameras that can capture and transmit high resolution footage will be available for a few dollars apiece. A device the size of a sugar cube that has enough memory and battery life to record video footage for several hours would fit the bill.
  • China’s military will get strong enough to defeat U.S. forces in the western Pacific. This means that, in a conventional war for control of the Spratly Islands and/or Taiwan, China would have >50% odds of winning. This shift in the local balance of power does not mean China will start a conflict. 
  • The quality and sophistication of China’s best military technology will surpass Russia’s best technology in all or almost all categories. However, it will still lag the U.S. 

2040s

  • The world and peoples’ outlooks and priorities will be very different than they were in 2019. Cheap renewable energy will have become widespread and totally negated any worries about an “energy crisis” ever happening, except in exotic, hypothetical scenarios about the distant future. There will be little need for immigration thanks to machine labor and cross-border telecommuting (VR, telepresence, and remote-controlled robots will be so advanced that even blue-collar jobs involving manual labor will be outsourced to workers living across borders). Moreover, there will be a strong sense in most Western countries that they’re already “diverse enough,” and that there are no further cultural benefits to letting in more foreigners since large communities of most foreign ethnic groups will already exist within their borders. There will be more need than ever for strong social safety nets and entitlement programs thanks to technological unemployment. AI will be a central political and social issue. It won’t be the borderline sci-fi, fringe issue it was in 2019.
  • Automation, mass unemployment, wealth inequalities between the owners of capital and everyone else, and differential access to expensive human augmentation technologies (like genetic engineering) will produce overwhelming political pressure for some kind of wealth redistribution and social safety net expansion. Countries that have diligently made small, additive reforms as necessary over the preceding decades will be untroubled. However, countries that failed to adapt their political and economic systems will face upheaval.
  • 2045 will pass without the Technological Singularity happening. Ray Kurzweil will either celebrate his 97th birthday in a wheelchair, or as a popsicle frozen at the Alcor Foundation.
  • Supercomputers that match or surpass upper-level estimates of the human brain’s computational capabilities will cost a few hundred thousand to a few million dollars apiece, meaning tech companies and universities will be able to afford large numbers of them for AI R&D projects, accelerating progress in the field. Hardware will no longer be the limiting factor to building AGI. If it hasn’t been built yet, it will be due to failure to figure out how to arrange the hardware in the right way to support intelligent thought, and/or to a failure to develop the necessary software. 
  • With robots running the economy, it will be common for businesses to operate 24/7: restaurants will never close, online orders made at 3:00 am will be packed in boxes by 3:10 am, and autonomous delivery trucks will only stop to refuel, exchange cargo, or get preventative maintenance.
  • Advanced energy technology, robot servants, 3D printers, telepresence, and other technologies will allow people to live largely “off-grid” if they choose, while still enjoying a level of comfort that 2019 people would envy.
  • Robot servants will be common in upper-income and middle-class households across the developed world. Some will be function-specific, like autonomous lawn mowers, while others will be multifunctional, like robot butlers. They will work more slowly than humans and will make mistakes more often, but nevertheless, they will save their human owners many hours of work each week. A high-quality multifunction robot servant will cost $5,000 – $20,000 in today’s money. In other words, cheaper than a new car, but still a significant investment of money.
  • Androids will be significantly better than they were in the 2030s, and aspects of their physiques, intelligence, and capabilities will overlap even more with humans, but they still won’t be able to pass as one of us in normal situations. If you could examine one at very close distance, you would see that its skin and other external features were less detailed than those of real humans. Their body movements will be clumsier and more limited than the average human’s, probably leaving them with the same overall reflexes, nimbleness, balance, and speed as an elderly human. They will also lack the battery life to function for a whole work day in physically demanding occupations.
  • Recycling will become much more efficient and practical thanks to house robots properly cleaning, sorting, and crushing/compacting waste before disposing of it. Automated sorting machines at recycling centers will also be much better than they are today. Today, recycling programs are hobbled because even well-meaning humans struggle to remember which of their trash items are recyclable and which aren’t since the acceptable items vary from one municipality to the next, and as a result, recycling centers get large amounts of unusable material, which they must filter out at great cost. House robots would remember it perfectly.
  • Thanks to this diligence, house robots will also increase backyard composting, easing the burden on municipal trash services. 
  • Genetic engineering of offspring becomes about as common among richer people as IVF is among them in 2023. The engineered offspring aren’t “superhumans”–they’re slightly better than they would have been without technological intervention.
  • It will be common for cities, towns and states to heavily restrict or ban human-driven vehicles within their boundaries. A sea change in thinking will happen as autonomous cars become accepted as “the norm,” and human-driven cars start being thought of as unusual and dangerous.
  • There will be something that could be called a “self-driving RV vacation industry” wherein a person would rent a self-driving RV that would be programmed to take them on a multi-day tour of some area, hitting all the important sights. At each one, a virtual tour guide that the person could see, hear and interact with through smart glasses would lead them around on foot.
  • Over 90% of new car sales in developed countries will be for electric vehicles. Just as the invention of the automobile transformed horses into status goods used for leisure, the rise of electric vehicles will transform internal combustion vehicles into a niche market for richer people. 
  • A global “family tree” showing how all humans are related will be built using written genealogical records and genomic data from the billions of people who have had their DNA sequenced. It will become impossible to hide illegitimate children, and it will also become possible for people to find “genetic doppelgangers”–other people they have no familial relationship to, but with whom, by some coincidence, they share a very large number of genes. 
  • Improved knowledge of human genetics and its relevance to personality traits and interests will strengthen AI’s ability to match humans with friends, lovers, and careers. Rising technological unemployment will create a need for machines to match human workers with the remaining jobs in as efficient a manner as possible.
  • People with distinctive personalities (particularly vibrant, funny, or sexy) will routinely sell “digital copies” of themselves for other people to download and use as AI personal assistants. This will be analogous to today’s ability to select different voices for personal GPS devices. Additionally, users will be able to tweak “base versions” of downloaded personalities to suit their unique preferences. 
  • The digital personalities of fictitious people, like movie and cartoon characters, and of long-dead people, will also be downloadable. 
  • Realistic robot sex bots that can move and talk will exist. They won’t perfectly mimic humans, but will be “good enough” for most users. Using them will be considered weird and “for losers” at first, but in coming decades it will go mainstream, following the same pattern as Internet dating. [If we think of sex as a type of task, and if we agree that machines will someday be able to do all tasks better than humans, then it follows that robots will be better than humans at sex.]  
  • Augmented reality contact lenses will give people superhuman vision.
  • 3D TVs will improve. Among other things, multiple viewers watching the same TV from different viewing angles will experience the 3D visual effect. 
  • Any person will be able to use his personal technologies to create a highly immersive audiovisual experience almost anywhere. For example, a person’s computer glasses could simulate the experience of being in an IMAX movie theater. Alternatively, the person could use his smartphone or another device to beam video images against a wall, creating an ad hoc theater for real. Major improvements to the price-performance and energy efficiency of LEDs and lasers will let small personal devices to have inbuilt light projectors that match the quality of professional-quality projectors that cost thousands of dollars today.
  • There will be drones that can use facial recognition and other forms of recognition to autonomously track down specific people and kill them.
  • At least one major military will be using some type of combat robot (whether it is airborne, seaborne, or terrestrial) that is empowered to fire on human enemies autonomously. 

2050s

  • This is the earliest possible time that AGI/SAI will be invented. It will not be able to instantly change everything in the world or to initiate a Singularity, but it will rapidly grow in intelligence, wealth, and power. It will probably be preceded by successful computer simulations of the brains of progressively more complex model organisms, such as flatworms, fruit flies, and lab rats.
  • Humans will be heavily dependent upon their machines for almost everything (e.g. – friendship, planning the day, random questions to be answered, career advice, legal counseling, medical checkups, driving cars), and the dependency will be so ingrained that humans will reflexively assume that “The Machines are always right.” Consciously and unconsciously, people will yield more and more of their decision-making and opinion-forming to machines, and find that they and the world writ large are better off for it. This will be akin to having an angel on your shoulder watching your surroundings and watching you, and giving you constructive advice all the time. 
  • In the developed world, less than 50% of people between age 22 and 65 will have gainful full-time jobs. However, if unprofitable full-time jobs that only persist thanks to government subsidies (such as someone running a small coffee shop and paying the bills with their monthly UBI check) and full-time volunteer “jobs” (such as picking up trash in the neighborhood) are counted, most people in that age cohort will be “doing stuff” on a full-time basis.  
  • The doomsaying about Global Warming will start to quiet down as the world’s transition to clean energy hits full stride and predictions about catastrophes from people like Al Gore fail to pan out by their deadlines. Sadly, people will just switch to worrying about and arguing about some new set of doomsday prophecies about something else.
  • By almost all measures, standards of living will be better in 2050 than today. People will commonly have all types of wonderful consumer devices and appliances that we can’t even fathom. However, some narrow aspects of daily life are likely to worsen, such as overcrowding and further erosion of the human character. Just as people today have short memories and take too many things for granted, so shall people in the 2050s fail to appreciate how much the standard of living has risen since today, and they will ignore all the steady triumphs humanity has made over its problems, and by default, people will still believe the world is constantly on the verge of collapsing and that things are always getting worse.
  • Cheap desalination will provide humanity with unlimited amounts of drinking water and end the prospect of “water wars.” 
  • Mass surveillance and ubiquitous technology will have minimized violent crime and property crime in developed countries: It will be almost impossible to commit such crimes without a surveillance camera or some other type of sensor detecting the act, or without some device recording the criminal’s presence in the area at the time of the act. House robots will contribute by effectively standing guard over your property at night while you sleep. 
  • It will be common for people to have health monitoring devices on and inside of their bodies that continuously track things like their heart rate, blood pressure, respiration rate, and gene expression. If a person has a health emergency or appears likely to have one, his or her devices will send out a distress signal alerting EMS and nearby random citizens. If you walked up to such a person while wearing AR glasses, you would see their vital statistics and would receive instructions on how to assist them (i.e. – How to do CPR). Robots will also be able to render medical aid. 
  • Cities and their suburbs across the world will have experienced massive growth since 2019. Telepresence, relatively easy off-grid living, and technological unemployment will not, on balance, have driven more people out of metro areas than have migrated into them. Farming areas full of flat, boring land will have been depopulated, and many farms will be 100% automated. The people who choose to leave the metro areas for the “wilderness” will concentrate in rural areas (including national parks) where the climate is good, the natural scenery is nice, and there are opportunities for outdoor recreation. Real estate prices will, in inflation-adjusted terms, be much higher in most metro areas and places with natural beauty than they were in 2020 because the “supply” of those prime locations is almost fixed, whereas the demand for them is elastic and will rise thanks to population growth, rising incomes, and the aforementioned technology advancements.
  • Therapeutic cloning and stem cell therapies will become useful and will effectively extend human lifespan. For example, a 70-year-old with a failing heart will be able to have a new one grown in a lab using his own DNA, and then implanted into his chest to replace the failing original organ. The new heart will be equivalent to what he had when at age 18 years, so it will last another 52 years before it too fails. In a sense, this will represent age reversal to one part of his body. In a sense, this will represent age reversal to one part of his body.
  • As a result of the above technologies, it will be much rarer for people in rich countries to die waiting for organ transplants than it is now, in 2022.
  • The first healthy clone of an adult human will be born.
  • Many factories, farms, and supply chains will be 100% automated, and it will be common for goods to not be touched by a human being’s hands until they reach their buyers. Robots will deliver Amazon packages to your doorstep and even carry them into your house. Items ordered off the internet will appear inside your house a few hours later, as if by magic. 
  • Smaller versions of the robots used on automated farms will be available at low cost to average people, letting them effortlessly create backyard gardens. This will boost global food production and let people have greater control over where their food comes from and what it contains. 
  • The last of America’s Cold War-era weapon platforms (e.g. – the B-52 bomber, F-15 fighter, M1 Abrams tank, Nimitz aircraft carrier) will finally be retired from service. There will be instances where four generations of people from the same military family served on the same type of plane or ship. 
  • Cheap guided bullets, which can make midair course changes and be fired out of conventional man-portable rifles, will become common in advanced armies. 
  • Personal “cloaking devices” made of clothes studded with pinhole cameras and thin, flexible sheets of LEDs, colored e-ink, or some metamaterial with similar abilities will be commercially available. The cameras will monitor the appearance of the person’s surroundings and tell the display pixels to change their colors to match.
  • The “cloaking” outfits will also have benign applications related to fashion and everyday utility. People wearing them could use them to display morphing patterns and colors of their choice. It would even be possible to become a “walking TV.” The pixels could also be made to glow bright white, allowing the wearer to turn any part of his body into a flashlight. Ski masks made of the same material would let wearers change their facial features, fooling most face recognition cameras and certainly fooling the unaided eyes of humans, at least at a distance.
  • Powered exoskeletons will become practical for a wide range of applications, mainly due to improvements in batteries. For example, a disabled person could use a lightweight exoskeleton with a battery the size of a purse to walk around for a whole day on a single charge, and a soldier in a heavy-duty exoskeleton with a large backpack battery could do a day of marching on a single charge. (Note: Even though it will be technologically possible to equip infantrymen with combat exoskeletons, armies might reject the idea due to other impracticalities.)
  • There will be no technological or financial barrier to building powered combat exoskeletons that have cloaking devices. 
  • The richest person alive will achieve a $1 trillion net worth.
  • It will be technologically and financially feasible for small aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by carbon-neutral synthetic fossil fuels that cost no more than normal fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells.
  • Cheap guided bullets, capable of midair course changes to hit targets and of being fired out of conventional rifles, will become common in advanced armies. (One or two degrees of course change per 100 meters of bullet travel is realistic. ) Practical, affordable rifles capable of limited self-aiming will also exist (similar to the “Smartgun” from the movie Aliens). Thanks to these technologies, an ordinary rifleman of the 2050s will be like the snipers of today.

2060s

  • Machines will be better at satisfyingly matching humans with fields of study, jobs, friends, romantic partners, hobbies, and daily activities than most humans can do for themselves. Machines themselves will make better friends, confidants, advisers, and even lovers than humans. Additionally, machines will be smarter and more skilled at humans in most areas of knowledge and types of work. A cultural sea change will happen, in which most humans come to trust, rely upon, defend, and love machines.
  • House robots and human-sized worker robots will be as strong, agile, and dexterous as most humans, and their batteries will be energy-dense enough to power them for most of the day. A typical American family might have multiple robot servants that physically follow around the humans each day to help with tasks. The family members will also be continuously monitored and “followed” by A.I.s embedded in their portable personal computing devices and possibly in their bodies. 
  • Cheap home delivery of groceries, robot chefs, and a vast trove of free online recipes will enable people in average households to eat restaurant-quality meals at home every day, at low cost. Predictive algorithms that can appropriately choose new meals for humans based on their known taste preferences and other factors will determine the menu, and many people will face a culinary “satisfaction paradox.”
  • Average people will have access to high-quality meals that only rich people can have today at fancy restaurants.
  • Machines will understand humans individually and at the species level better than humans understand themselves. They will have highly accurate personality models of most humans along with a comprehensive grasp of human sociology, human decision-making, human psychology, human cognitive biases, and human nature, and will pool the information to accurately predict human behavior. A nascent version of a 1:1 computer simulation of the Earth–with the human population modeled in great detail–will be created. An important application will be economic modeling and forecasting. 
  • Machines will be better teachers than most trained humans. The former will have much sharper grasps of their pupils’ individual strengths, weaknesses, interests, and learning styles, and will be able to create and grade tests in a much fairer and less biased manner than humans. Every person will have his own tutor. 
  • There will be a small, permanent human presence on the Moon.
  • If a manned Mars mission hasn’t happened yet, then there will be intense pressure to do so by the centennial of the first Moon landing (1969).
  • The worldwide number of supercentenarians–people who are at least 110 years old–will be sharply higher than it was in 2019: Their population size could be 10 times bigger or more. 
  • Advances in a variety of technologies will make it possible to cryonically freeze humans in a manner that doesn’t pulverize their tissue. However, the technology needed to safely thaw them out won’t be invented for decades. 
  • China will effectively close the technological, military, and standard of living gaps with other developed countries. Aside from the unpleasantness of being a more crowded place, life in China won’t be worse overall than life in Japan or the average European country. Importantly, China’s pollution levels will be much lower than they are today thanks to a variety of factors.
  • Small drones (mostly aerial) will have revolutionized warfare, terrorism, assassinations, and crime and will be mature technologies. An average person will be able to get a drone of some kind that can follow his orders to find and kill other people or to destroy things.
  • Countermeasures against those small drones will also have evolved, and might include defensive drones and mass surveillance networks to detect drone attacks early on. The networks would warn people via their body-worn devices of incoming drone attacks or of sightings of potentially hostile drones. The body-worn devices, such as smartphones and AR glasses, might even have their own abilities to automatically detect drones by sight and sound and to alert their wearers.
  • At least one large, manned spaceship that is designed to stay in space will exist, probably in the form of a reusable ferry that moves people between Earth and Mars.

2070s

  • 100 years after the U.S. “declared war” on cancer, there still will not be a “cure” for most types of cancer, but vaccination, early detection, treatment, and management of cancer will be vastly better, and in countries with modern healthcare systems, most cancer diagnoses will not reduce a person’s life expectancy. Consider that diabetes and AIDS were once considered “death sentences” that would invariably kill people within a few years of diagnosis, until medicines were developed that transformed them into treatable, chronic health conditions. 
  • Hospital-acquired infections will be far less of a problem than they are in 2020 thanks to better sterilization practices, mostly made possible by robots.
  • It will be technologically and financially feasible for large commercial aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by synthetic fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells. 
  • Digital or robotic companions that seem (or actually are) intelligent, funny, and loving will be easier for humans to associate with than other humans.
  • Technology will enable the creation of absolute surveillance states, where all human behavior is either constantly monitored or is inferred with high accuracy based on available information. Even a person’s innermost thoughts will be knowable thanks to technologies that monitor him or her for the slightest things like microexpressions, twitches, changes in voice tone, and eye gazes. When combined with other data regarding how the person spends their time and money, it will be possible to read their minds. The Thought Police will be a reality in some countries.  
  • Thanks to advanced lab synthesis of foods, new spices, hybrid fruits and vegetables, and meats with entirely new taste profiles will be brought into existence. Swaths of the “landscape of all possible flavors” that are currently unexplored will be.
  • Many heavily automated farms (including indoor farms and gardens on suburban plots of land) will produce food that is noticeably tastier and measurably more nutritious that most of today’s food because the advanced farms won’t need to use pesticides or to favor crop varieties that are hardy enough to endure transport over long supply chains. At low cost and for little effort, communities and individuals with small amounts of land will be able to meet their own food needs locally. People who value “natural” lifestyles might, ironically, find it most beneficial to rely on robots to make their food for them.
  • Glasses-free 3D TVs will be almost fully developed technologies with few performance limitations. 

2100

  • Humans probably won’t be the dominant intelligent life forms on Earth.
  • Latest possible time that AGI/SAI will be invented. By this point, computer hardware will so powerful that we could do 1:1 digital simulations of human brains. If our AI still falls far short of human-like general intelligence and creativity, then it might be that only organic substrates have the necessary properties to support them.
  • The worst case scenario is that AGI/Strong AI will have not been invented yet, but thousands of different types of highly efficient, task-specific Narrow AIs will have (often coupled to robot bodies), and they will fill almost every labor niche better than human workers ever could (“Death by a Thousand Cuts” job automation scenario). Humans grow up in a world where no one has to work, and the notion of drudge work, suffering through a daily commute, and involuntarily waking up at 6:00 am five days a week is unfathomable. Every human will have machines that constantly monitor them or follow them around, and meet practically all their needs.
  • Telepresence technology will also be very advanced, allowing humans to do nearly any task remotely, from any other place in the world, in safety and comfort. This will include cognitive tasks and hands-on tasks. If any humans still have jobs, they’ll be able to work from anywhere.
  • Sophisticated narrow AI will be integrated into the telepresence technology, providing human workers with real-time assistance with tasks. An illustrative scenario would have a human in Nigeria using a VR rig to remotely control a robot that is fixing an air conditioner in England. Software programs monitoring the live video feed would recognize all of the objects in the robot’s field of view and would also understand what the human worker was trying to accomplish, and the programs would help him by visually highlighting tools or air conditioner components, or by giving him verbal advice on what to do. 
  • The use of robotic surrogate bodies for remote work will also erase any employment gaps caused by physical strength and endurance differences between the sexes and between the elderly and the young. Small men, old people, and women of average stature will be just as good at performing hard manual labor as big men. The easing of physical strain associated with work will also allow people to work past today’s retirement age. However, most serious physical work will be best left to autonomous machines.
  • The world could in many ways resemble Ray Kurzweil’s predicted Post-Singularity world. However, the improvements and changes will have accrued thanks to decades of AGI/Strong AI steady effort. Everything will not instantly change on DD/MM/2045 as Kurzweil suggests it will.
  • Hundreds of millions, and possibly billions, of “digitally immortal avatars” of dead humans will exist, and you will be able to interact with them through a variety of means (in FIVR, through devices like earpieces and TV screens, in the real world if the avatar takes over an android body resembling the human it was based on). 
  • A weak sort of immortality will be available thanks to self-cloning, immortal digital avatars, and perhaps mind uploading. You could clone yourself and instruct your digital avatar–which would be a machine programmed with your personality and memories–to raise the clone and ensure it developed to resemble you. Your digital avatar might have an android body or could exist in a disembodied state. 
  • It will be possible to make clones of humans using only their digital format genomic data. In other words, if you had a .txt file containing a person’s full genetic code, you could use that by itself to make a living, breathing clone. Having samples of their cells would not be necessary. 
  • The “DNA black market” that arose in the 2030s will pose an even bigger threat since it will be now possible to use DNA samples alone or their corresponding .txt files to clone a person or to produce a sperm or egg cell and, in turn, a child. Potential abuses include random people cloning or having the children of celebrities they are obsessed with, or cloning billionaires in the hopes of milking the clones for money. Important people who might be targets of such thefts will go to pains to prevent their DNA from being known. Since dead people have no rights, third parties might be able to get away with cloning or making gametes of the deceased.
  • Life expectancy escape velocity and perhaps medical immortality will be achieved. It will come not from magical, all-purpose nanomachines that fix all your body’s cells and DNA, but from a combination of technologies, including therapeutic cloning of human organs, cybernetic replacements for organs and limbs, and stem cell therapies that regenerate ageing tissues and organs inside the patient’s body. The treatments will be affordable in large part thanks to robot doctors and surgeons who work almost for free, and to medical patents expiring.
  • All other aspects of medicine and healthcare will have radically advanced. There will be vaccines and cures for almost all contagious diseases. We will be masters of human genetic engineering and know exactly how to produce people that today represent the top 1% of the human race (holistically combining IQ, genetic health, physical attractiveness, and likable/prosocial personality traits). However, the value of even a genius-IQ human will be questionable since intelligent machines will be so much smarter.
  • Augmentative cybernetics (including direct brain-to-computer links) will exist and be in common use.
  • While the traditional, “pure” races of humans will all still exist, notions of “race” and racial identity will be scrambled by the large numbers of mixed-race people who will be alive, and by widespread genetic engineering that will give people combinations of physical traits that were almost unachievable through normal human breeding. Examples might include black people with naturally blue eyes, or East Asians with naturally blonde hair. (Voluntary genetic engineering will also ensure that redheads don’t ever die out.) Some people will even have totally new genes, either synthesized in labs or borrowed from animals, that give them physical traits not found in any preexisting human race, like red eyes or purple hair.
  • Full-immersion virtual reality (FIVR) will exist wherein AI game masters constantly tailor environments, NPCs and events to suit each player’s needs and to keep them entertained. Every human will have his own virtual game universe where he’s #1. With no jobs in the real world to occupy them, it’s quite possible that a large fraction of the human race will willingly choose to live in FIVR. (Related to the satisfaction paradox) Elements of these virtual environments could be pornographic and sexual, allowing people to gratify any type of sexual fetish or urge with computer-generated scenarios and partners. 
  • More generally, AIs and humans whose creativity is turbocharged by machines will create enjoyable, consumable content (e.g. – films, TV shows, songs, artwork, jokes, new types of meals) faster than non-augmented humans can consume it. As a simple example of what this will be like, assume you have 15 hours of free time per day, that you love spending it listening to music, and each day, your favorite bands produce 16 hours worth of new songs that you really like.
  • TVs will be capable of true holography, with no visual distortions or flaws. 
  • The vast majority of unaugmented human beings will no longer be assets that can invent things and do useful work: they will be liabilities that do (almost) everything worse than intelligent machines and augmented humans. Ergo, the size of a nation’s human population will subtract from its economic and military power, and radical shifts in geopolitics are possible. Geographically large but sparsely populated countries like Russia, Australia and Canada might become very strong.
  • The transition to green energy sources will be complete, and humans will no longer be net emitters of greenhouse gases. The means will exist to start reducing global temperatures to restore the Earth to its pre-industrial state, but people will resist because they will have gotten used to the warmer climate. People living in Canada and Russia won’t want their countries to get cold again.
  • Synthetic meat will taste no different from animal meat, and will be at least as cheap to make. The raising and/or killing of animals for food will be be illegal in many countries, and trends will clearly show the practice heading for worldwide ban. 
  • Meats that are expensive and/or rare today, like Kobe beef steaks, snakes, bats, or even human flesh, will be cheap and widely available thanks to meat synthesis technology. 
  • Cheap, synthetic chicken eggs will also exist and will taste no different from natural eggs. 
  • The means to radical alter human bodies, alter memories, and alter brain structures will be available. The fundamental bases of human existence and human social dynamics will change unpredictably once differences in appearance/attractiveness, intelligence, and personality traits can be eliminated at will. Individuals won’t be defined by fixed attributes anymore. 
  • Brain implants will make “telepathy” possible between humans, machines and animals. Computers, sensors and displays will be embedded everywhere in the built environment and in nature, allowing humans with brain implants to interface with and control things around them through thought alone. 
  • Brain implants and brain surgeries will also be used to enhance IQ, change personality traits, and strengthen many types of skills. 
  • Using brain-computer interfaces, people will be able to make sophisticated songs and pieces of artwork with their thoughts alone. 
  • Technologically augmented humans and androids will have many abilities and qualities that ancient people considered “Godlike,” such as medical immortality, the ability to control objects by thought, telepathy, perfect memories, and superhuman senses.
  • Flying cars designed to carry humans could be common, but they will be flown by machines, not humans. Ground vehicles will retain many important advantages (fuel efficiency, cargo capacity, safety, noise level, and more) and won’t become obsolete. Instead of flying cars, it’s more likely that there will be millions of small, autonomous helicopters and VTOL aircraft that will cheaply ferry people through dense, national networks of helipads and airstrips. Autonomous land vehicles would take take passengers to and from the landing sites. (https://www.militantfuturist.com/why-flying-cars-never-took-off-and-probably-never-will/
  • The notion of vehicles (e.g. – cars, planes, and boats) polluting the air will be an alien concept. 
  • Advanced nanomachines could exist.
  • Vastly improved materials and routine use of very advanced computer design simulations (including simulations done in quantum computers) will mean that manufactured objects of all types will be optimally engineered in every respect, and might seem to have “magical” properties. For example, a car will be made of hundreds of different types of alloys, plastics, and glass, each optimized for a different part of the vehicle, and car recalls will never happen since the vehicles will undergo vast amounts of simulated testing in every conceivable driving condition in 1:1 virtual simulations of the real world. 
  • Design optimization and the rise of AGI consumption will virtually eliminate planned obsolescence. Products that were deliberately engineered to fail after needlessly short periods, and “new” product lines that were no better than what they replaced, but had non-interchangeable part sizes would be exposed for what they were, and AGI consumers would refuse to buy them. Production will become much more efficient and far fewer things will be thrown out. 
  • Relatively cheap interplanetary travel (probably just to Mars and to space stations and moons that are about as far as Mars) will exist.
  • Androids that are outwardly indistinguishable from humans will exist, and humans will hold no advantages over them (e.g. – physical dexterity, fine motor control, appropriateness of facial expressions, capacity for creative thought). Some androids will also be indistinguishable to the touch, meaning they will seem to be made of supple flesh and will be the same temperature as human bodies. However, their body parts will not be organic.
  • Sex robots will be indistinguishable from humans.
  • Android assassins like the T-800s from the Terminator films will exist. They will look identical to humans, will be able to blend into human populations, track down targets, and kill or abduct them. As in the films, these androids will be stronger, more durable, and more skilled with weapons than we are.
  • Robots that are outwardly identical to sci-fi and fantasy characters and extinct animals, like grey aliens, elves, fairies, giant house cats, and dinosaurs, will exist and will occasionally be seen in public. Some weird person will want their robot butler to look like bigfoot, and at least one hobbyist will build a life-sized robotic dragon that can fly and spit fire.
    https://www.mentalfloss.com/article/503967/could-game-throness-dragons-really-fly-we-asked-some-experts 
  • Humans interested in extreme body modifications will be able to surgically alter themselves to look like many of those creatures.
  • Machines that are outwardly indistinguishable from animals will also exist, and they will have surveillance and military applications. 
  • Drones, miniaturized smart weapons, and AIs will dominate warfare, from the top level of national strategy down to the simplest act of combat. The world’s strongest military could, with conventional weapons alone, destroy most of the world’s human population in a short period of time. 
  • It will be possible for one country to build an army of killer robots that equals the size of the whole human population. 
  • The construction and daily operation of prisons will have been fully automated, lowering the monetary costs of incarceration. As such, state prosecutors and judges will no longer feel pressure to let accused criminals have plea deals or to give them shorter prison sentences to ease the burdens of prison overcrowding and high overhead costs. 
  • The term “millionaire” will fall out of use in the U.S. and other Western countries since inflation will have rendered $1 million USD only as valuable as $90,000 USD was in 2019 (assuming a constant inflation rate of 3.0%).
  • There will still be major wealth and income inequality across the human race. However, wealth redistribution, better government services, advances in industrial productivity, and better technologies will ensure that even people in the bottom 1% have all their basic and intermediate life needs meet. In many ways, the poor people of 2100 will have better lives than the rich people of 2020.

2101 – 2200 AD

  • Humans will definitely stop being the dominant intelligent life forms on Earth. 
  • Many “humans” will be heavily augmented through genetic engineering, other forms of bioengineering, and cybernetics. People who outwardly look like the normal humans of today might actually have extensive internal modifications that give them superhuman abilities. Non-augmented, entirely “natural” humans like people in 2019 will be looked down upon in the same way you might today look at a very low IQ person with sensory impairments. Being forced by your biology to incapacitate yourself for 1/3 of each day to sleep will be tantamount to having a medical disability. 
  • Due to a reduced or nonexistent need for sleep among intelligent machines and augmented humans and to the increased interconnectedness of the planet, global time zones will become much less relevant. It will be common for machines, humans, businesses, and groups to use the same clock–probably Coordinated Universal Time (UTC)–and for activity to proceed on a 24/7 basis, with little regard of Earth’s day/night cycle. 
  • Physical disabilities and defects of appearance that cause untold anguish to people in 2019 will be easily and cheaply fixable. For example, male-pattern baldness and obesity will be completely ameliorated with minor medical interventions like pills or outpatient surgery. Missing or deformed limbs will be easily replaced, all types of plastic surgery (including sex reassignment) will be vastly better and cheaper than today, and spinal cord damage will be totally repairable. The global “obesity epidemic” will disappear. Transsexual people will be able to seamlessly alter their bodies to conform with their preferred genders, or to alter their brains so their gender identities conform with the bodies they were born with. 
  • These advanced body modification abilities will partly be thanks to medical micro- and nanomachines that will be able to travel through a person’s bloodstream and flesh, and to precisely kill small groups of cells (including bone) or stimulate cell proliferation. Over the course of a few sessions, a person could finely sculpt their nose, cheeks or private parts to match whatever they wanted. Genetic engineering for beauty will probably become less important as a result. 
  • All sleep disorders will be curable thanks to cybernetics that can use electrical pulses to quickly initiate sleep states in human brains. The same kinds of technologies will also reduce or eliminate the need for humans to sleep, and for people to control their dreams. 
  • Brain-computer interfaces will let people control, pre-program, and, to a limited extent, record their dreams. 
  • Through electrical signaling and chemical releases, the brain implants will be able to induce any type of mental or emotional state. This will include altered states of consciousness, like lucid dreaming, meditation, or intoxication (as a result, mind-altering drugs could become obsolete). A person might have to go through a “calibration period” where the implants would monitor and record their brain activity while they experienced different things, and then, the user would experiment with the implant to see how well it could induce the recorded brain states. Through a process of guided trial and error, they would become masters of their own minds. This ability would make human life richer and more productive, as people could have valuable experiences during portions of the day when they would otherwise be bored or “switched off,” and to even do useful problem-solving tasks in their sleep. Alternatively, the ability to induce feelings of blinding pleasure could lead to a major addiction problem among humans, and widen the productivity/usefulness gap between our species and intelligent machines.
  • Direct brain-to-computer interfaces and other advanced technologies will let humans enter virtual reality worlds that seem no different from the real world (the “Matrix scenario”), and to remotely control robot bodies located anywhere in the real world, with fully lifelike levels of sensory richness and fusion. Able to control perfect robot bodies of any design in the real world, and to take on any form in virtual worlds, some humans will have no use for real, fixed-form bodies, and will dispense with them, instead existing as “brains in jars.”  
  • Some “humans” will lack fixed, corporeal forms; they will be able to extensively modify their original bodies or to switch bodies at will. A person could take the form of something nonhuman, like a terrestrial squid. They exist as disembodied, cybernetically enhanced brains in life support containers that can assume control over any physical bodies they want, either by remotely controlling them through the internet, or by physically inserting their life support containers into matching slots in the bodies.
  • The line between “biological” and “synthetic” will blur as artificial objects take on some of the properties of organic matter and as they are integrated into originally biological life forms. Examples include humans who have artificial limbs and organs that are soft, supple, and interface with their nervous systems as well as natural limbs and organs; humans whose bodies contain special lines of cells meant to save and store non-genomic data as DNA; cybernetic implants that are soft and capable of growing inside a person’s body; machines that can heal their own bodies; and microscopic, self-reproducing machines that can thrive indefinitely in human bodies, in wild animals, or in other life forms and even be transferred between individuals, like benign diseases.
  • Almost all of today’s diseases will be cured.
  • The means to halt and reverse human aging will be created. The human population will come to be dominated by people who are eternally young and beautiful. 
  • Humans and machines will be immortal. Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who lived their lives knowing they were doomed to deteriorate and die. 
  • Extreme longevity, better reproductive technologies that eliminate the need for a human partner to have children, and robots that do domestic work and provide companionship (including sex) will weaken the institution of marriage more than any time in human history. An indefinite lifetime of monogamy will be impossible for most people to commit to. 
  • At reasonable cost, it will be possible for women to create healthy, genetically related children at any point in their lives, and without using the 2019-era, pre-menopausal egg freezing technique. For example, a 90-year-old, menopausal woman will be able to use reproductive technologies to make a baby that shares 50% of her DNA. 
  • Opposite-sex human clones will exist. Such a clone would share 22-1/2 of their 23 chromosome pairs with their “original.” Only the final sex chromosome, which would be either a “Y” or a second “X”, would differ.  
  • Immortality, the automation of work, and widespread material abundance will completely transform lifestyles. With eternity to look forward to, people won’t feel pressured to get as rich as possible as quickly as possible. As stated, marriage will no longer be viewed as a lifetime commitment, and serial monogamy will probably become the norm. Relationships between parents and offspring will change as longevity erases the disparities in generational outlook and maturity that traditionally characterize parent-child interpersonal dynamics (e.g. – 300-year-old dad doesn’t know any better than his 270-year-old son). The “factory model” of public education–defined by conformity, rote memorization, frequent intelligence testing, and curricula structured to serve the needs of the job market–will disappear. The process of education will be custom-tailored to each person in terms of content, pacing, and style of instruction. Students will be much freer to explore subjects that interest them and to pursue those that best match their talents and interests. 
  • Radically extended human lifespans mean it will become much more common to have great-grandparents around. A cure for aging will also lead to families where members separated in age by many decades look the same age and have the same health. Additionally, older family members won’t be burdensome since they will be healthy.
  • The human population might start growing again thanks to medical immortality, to advanced fertility technologies including artificial wombs and cloning, and to robots that help raise children, reducing the workload for human parents. The human race won’t die out thanks to persistently low birthrates.
  • Thanks to radical genetic engineering, there will be “human-looking,” biological people among us that don’t belong to our species, Homo sapiens. Examples could include engineered people who have 48 chromosomes instead of 46, people whose genomes have been shortened thanks to the deletion of junk DNA, or people who look outwardly human but who have radically different genes within their 46 chromosomes, so they have different numbers or arrangements of internal organs (like two hearts), or even new types of internal organs, such as bird-like lung . Such people wouldn’t be able to naturally breed with Homo sapiens, and would belong to new hominid species. 
  • Extinct species for which we have DNA samples (ex – from passenger pigeons on display in a museum) will “resurrected” using genetic technology.
  • The global mass surveillance network will encompass unpopulated areas and wilderness areas, protecting animals from poaching. Extinctions of large, wild animals will stop.
  • The technology for safely thawing humans out of cryostasis and returning them to good health will be created. 
  • Suspended animation will become a viable alternative to suicide. Miserable people could “put themselves under,” with instructions to not be revived until the ill circumstances that tormented them had disappeared or until cures for their mental and medical problems were found. 
  • A sort of “time travel” will become possible thanks to technology. Suspended animation will let people turn off their consciousnesses until any arbitrary date in the future. From their perspective, no time will have elapsed between being frozen and being thawed out, even if hundreds of years actually passed between those two events, meaning the suspended animation machine will subjectively be no different from a time machine to them. FIVR paired with data from the global surveillance networks will let people enter highly accurate computer simulations of the past. The data will come from sources like old maps, photos, videos, and the digital avatars of people, living and dead. The computers simulations of past eras will get less accurate as the dates get more distant and the data scarcer.
  • It will be possible to upload human minds to computers. The uploads will not share the same consciousness as their human progenitors, and will be thought of as “copies.” Mind uploads will be much more sophisticated than the digitally immortal avatars that will come into existence in the 2030s.
  • Different types of AGIs with fundamentally different mental architectures will exist. For example, some AGIs will be computer simulations of real human brains, while others will have totally alien inner workings. Just as a jetpack and a helicopter enable flight through totally different approaches, so will different types of AGIs be capable of intelligent thought. 
  • Gold, silver, and many other “precious metals” will be worth far less than today, adjusting for inflation, because better ways of extracting (including from seawater) them will have been developed. Space mining might also massively boost supplies of the metals, depressing prices. Diamonds will be nearly worthless thanks to better techniques for making them artificially. 
  • The first non-token quantities of minerals derived from asteroid mining will be delivered to the Earth’s surface. (Finding an asteroid that contains valuable minerals, altering its orbit to bring it closer to Earth, and then waiting for it to get here will take decades. No one will become a trillionaire from asteroid mining until well into the 22nd century.)
  • Synthetic life forms will colonize parts of the world uninhabitable to humans, like mountaintops, oceans (both on the surface and under it), and maybe even underground regions. Intelligent and semi-intelligent machines will be common sights, even in remote areas.
  • Intelligent life from Earth will colonize the entire Solar System, all dangerous space objects in our System will be found, the means to deflect or destroy them will be created, and intelligent machines will redesign themselves to be immune to the effects of radiation, solar flares, gamma rays, and EMP. As such, natural phenomena (including global warming) will no longer threaten the existence of civilization.  Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who were confined to Earth and at the mercy of planet-killing disasters. 
  • “End of the World” prophecies will become far less relevant since civilization will have spread beyond Earth and could be indefinitely self-sustaining even if Earth were destroyed. Some conspiracy theorists and religious people would deal with this by moving on to belief in “End of the Solar System” prophecies, but these will be based on extremely tenuous reasoning. 
  • The locus of civilization and power in our Solar System will shift away from Earth. The vast majority of intelligent life forms outside of Earth will be nonhuman. [Upon further reflection, I think it will take longer for this milestone to pass. For one thing, even as the off-world population intelligent machines and their infrastructure quickly grows, so will the same things keep growing on Earth.]
  • A self-sustaining, off-world industrial base will be created.
  • It will be possible to safely smoke cigarettes in more advanced types of space ships. 
  • Spy satellites with lenses big enough to read license plates and discern facial features will be in Earth orbit. 
  • Space probes made in our Solar System and traveling at sub-light speeds will reach nearby stars.
  • All of the useful knowledge and great works of art that our civilization has produced or discovered could fit into an advanced memory storage device the size of a thumb drive. It will be possible to pair this with something like a self-replicating Von Neumann Probe, creating small, long-lived machines that would know how to rebuild something exactly like our civilization from scratch. Among other data, they would have files on how to build intelligent machines and cloning labs, and files containing the genomes and mind uploads of billions of unique humans and non-human organisms. Copies of existing beings and of long-dead beings could be “manufactured” anywhere, and loaded with the personality traits and memories of their predecessors. Such machines could be distributed throughout our Solar System as an “insurance policy” against our extinction, or sent to other star systems to seed them with life. Some of the probes could also be hidden in remote, protected locations on Earth.
  • We will find out whether alien life exists on Mars and the other celestial bodies in our Solar System. 
  • Intelligent machines will get strong enough to destroy the human race, though it’s impossible to assign odds to whether they’ll choose to do so.
  • If the “Zoo Hypothesis” is right, and if intelligent aliens have decided not to talk to humans until we’ve reached a high level of intellect, ethics, and culture, then the machine-dominated civilization that will exist on Earth this century might be advanced enough to meet their standards. Uncontrollable emotions and impulses, illogical thinking, tribalism, self-destructive behavior, and fear of the unknown will no longer govern individual and group behavior. Aliens could reveal their existence knowing it wouldn’t cause pandemonium. 
  • The government will no longer be synonymous with slowness and incompetence since all bureaucrats will be replaced by machines.
  • Technology will be seamlessly fused with humans, other biological organisms, and the environment itself.  
  • It will be cheaper and more energy-efficient to grow or synthesize almost all types of food in labs or factories than to grow and harvest it in traditional, open-air farms. Shielded from the weather and pests and not dependent on soil quality, the amounts and prices of foods will be highly consistent over time, and worries about farmland muscling out or polluting natural ecosystems will vanish. Animals will no longer be raised for food. Not only will this benefit animals, but it will benefit humans since it will eliminate a a major source of communicable disease (e.g. – new influenza strains originate in farm animals and, thanks to close contact with human farmers, evolve to infect people thanks to a process called “zoonosis”).
  • Additionally, the means will exist to cheaply and artificially produce non-edible organic products, like wool and wood, in industrial quantities. This means anyone will be able to buy animal products that are very expensive today, like snakeskin boots or bear rugs. Unlimited quantities of perfectly simulated animal products that have useful properties, like pillow feathers (softness) or high-grade wool (heat insulation), will be available, and no animals will need to be harmed to make them. This will greatly help endangered species that are poached for their parts, like elephants killed for their ivory tusks. Lab-synthesized wood that is superior to “old-growth” timber will also exist.
  • The ability to cheaply make large quantities of organic products will lead to the creation of bizarre objects that no one conceived of before, like vehicle frames made of single pieces of bone.
  • A global network of sensors and drones will identify and track every non-microscopic species on the planet. Cryptids like “bigfoot” and the “Loch Ness Monster” will be definitively proven to not exist. The monitoring network will also make it possible to get highly accurate, real-time counts of entire species populations. Mass gathering of DNA samples–either taken directly from organisms or from biological residue they leave behind–will also allow the full genetic diversity of all non-microscopic species to be known. 
  • That same network of sensors and machines will let us monitor the health of all the planet’s ecosystems and to intervene to protect any species. Interventions could include mass, painless sterilizations of species that are throwing the local ecology out of balance, mass vaccinations of species suffering through disease epidemics, reintroductions of extinct species, or widescale genetic engineering of a species. 
  • The technology and means to implement David Pearce’s global “benign stewardship” of nonhuman organic life will become available.  (https://youtu.be/KDZ3MtC5Et8) After millennia of inflicting damage and pain to the environment and other species, humanity will have a chance to inaugurate an era free of suffering.
  • The mass surveillance network will also look skyward and see all anomalous atmospheric phenomena and UFOs.
  • Robots will clean up all of the garbage created in human history. 
  • Every significant archaeological site will be excavated and every shipwreck found. There will be no work left for people in the antiquities. 
  • Dynamic traffic lane reversal will become the default for all major roadways, sharply increasing road capacity without compromising safety. Autonomous cars that can instantly adapt to changes in traffic direction and that can easily avoid hitting each other even at high speeds will enable the transformation.
  • The Imperial system of weights and measures will fall out of use worldwide. Intelligent machines and posthumans will be able to switch to Metric without a problem. The same nimbleness of mind might also let them break from the ingrained traditions created by past humans and adopt other new standards, like new alphabets, numerals, and languages. 

Review: “Dark Side of the Moon”

Plot:

In the year 2022, Earth is encircled by satellites armed with nuclear missiles. Manned, private spaceships rendezvous with them for regular maintenance and repair. The film centers around one such ship, named Spacecore 1, as its mission takes it around the dark side of the Moon. 

A mysterious malfunction cripples Spacecore 1’s systems, leaving it adrift and with only enough oxygen for 24 hours. Unable to summon help with distress calls, the crew faces certain death. Luckily, the vintage Space Shuttle Endeavor appears from nowhere and docks itself with Spacecore 1, sharing its power and oxygen. Though the Shuttle’s behavior shows it is under intelligent control, it is strangely uncommunicative. 

Exploring the Shuttle

After docking, two of Spacecore 1′s crewmen enter Endeavor to find out who is piloting it. The craft is disheveled and is carrying rock samples mined from the dark side of the Moon. Chillingly, they discover the mutilated corpse of an astronaut, which they bring back to Spacecore 1’s infirmary for examination. This proves to be a terrible mistake, as it turns out the dead astronaut’s body hosts an evil force that can attack other people and transfer its essence to them. One by one, the crew are corrupted and killed. 

An astronaut infested with the evil force

Dark Side of the Moon was a bad, low-budget movie that clearly tried to copy better sci-fi films that came in the decade before it (Alien and The Thing). The acting and dialog were wooden, and the second half of the film went in circles as members of the crew were infested with the evil spirit, died, and became paranoid of each other, repeat, repeat. The special effects and set design were unimpressive, and many scenes were so dimly lit that it was hard to tell what was going on. 

This cross-sectional drawing shows the Shuttle’s scale. Its interior wouldn’t take long to search, and it lacks room for hiding places.

The movie also had some ridiculous elements, like people smoking cigarettes inside spaceships, the crew having several assault rifles even though their mission only involved fixing unmanned satellites, egregious sexual harassment, and the interior of the Endeavor being several times larger than it is in real life (secret rooms, very high ceiling, takes a long time to search). 

The film’s premise, that a mysterious evil force is stalking the crew of a stranded spaceship and making them paranoid, was interesting and thus its only bright spot. It was executed vastly better seven years later in the movie Event Horizon

If you value your scarce time on Earth even a little bit, then reading this review should be the closest you ever get to watching Dark Side of the Moon

Analysis:

There are large, manned spaceships. Spacecore 1 is, by our standards, an enormous spaceship. None of the characters ever mention its dimensions, but in special effects shots where it is docked with the Shuttle Discovery, it looks roughly ten times bigger than the latter. That would make Spacecore 1 significantly larger than even the International Space Station, which is the largest object humans have so far put into space. 

This illustration shows how big a space shuttle is compared to the ISS and past space stations.

Spacecore 1‘s exterior is also not streamlined, suggesting it is not designed to land on Earth or any other planet with an atmosphere. It was assembled in space and is meant to stay there. Again, the ISS and the Chinese space station are the only two craft in existence that meet those criteria. However, because they can’t leave Earth’s low orbit, they don’t qualify as “spaceships.”

Spaceships like Spacecore 1 haven’t been built yet, though our failure to do so owes to a lack of political will rather than technology falling short. If the U.S. or a group of advanced countries had dedicated itself towards building something like Spacecore 1 starting in the 1990s, it could be flying out to lunar orbit by now. 

I predict the first relatively large, manned spaceship that is designed to stay in space could exist as early as the 2030s, in the form of a reusable ferry that moves people between Earth and Mars. At both ends of its repeating journey, smaller craft designed to transfer passengers and cargo from orbit to the surface and vice versa would dock with the spaceship. 

The Hubble Space Telescope is, aside from the two manned space stations, the largest manmade object orbiting Earth. It is as big as a bus. Coincidentally, the shuttle Discovery ferried the Telescope into orbit.

Also, if we ever built a spaceship meant to repair and refuel satellites, it wouldn’t need to be nearly as big as Spacecore 1, and probably wouldn’t need a human crew. Our largest unmanned satellites orbiting Earth are about as big as buses, so a craft designed to refuel one of them and even replace several of its components would need even less interior space of its own to store the necessary cargo. There’s no reason a repair ship needs to be bigger than the thing it is meant to repair.

The people and pickup trucks in this photo give a sense of the X-37’s size.

The new X-37 space plane is said to be able to service satellites in orbit. It is much smaller than even the Space Shuttles, is unmanned and remotely controlled from Earth. 

There are satellites that launch nuclear missiles. Spacecore 1′s mission is to fix and maintain military satellites that are armed with nuclear missiles. The Outer Space Treaty of 1967 banned all countries from putting nuclear weapons in space, and to the best of our knowledge, no one has ever violated it. This largely owes to the fact that, in spite of how menacing the idea of a nuclear missile in space is, it’s impractical and brings little military benefit. Missiles stationed on the Earth’s surface are much cheaper, can hit any target on the planet, and can be hidden from enemies.

Space-based nuclear missiles would cost a fortune to put into orbit, would not be able to strike targets that ground-based missiles couldn’t, and would be impossible to hide from any enemy nation that had telescopes. Expensive nuclear weapon satellites could be destroyed by much cheaper space rockets designed to enter their well-known orbital paths and collide with them.

Manned spaceships travel beyond the orbit of the Moon. As the film’s title implies, it is set on the dark side of the Moon, or more precisely, on two spaceships that are several hundred or thousand miles above the dark side of the Moon. The last time humans ever went that far into space was 50 years ago when the astronauts of Apollo 17 orbited the Moon. At that moment, they were about 200,000 miles from Earth. Since the end of the Apollo Program, no human has ventured more than a few hundred miles into space. 

NASA just released this “selfie” of an unmanned Orion space capsule as it was above the dark side of the Moon

Humans will probably match our old distance record this decade when astronauts return to the Moon. Fittingly, at this moment, NASA’s first “Orion” space capsule is orbiting the Moon as the first step in a multi-year plan to send humans back in one of the capsules. NASA’s program for accomplishing this has suffered years of delays, and in an alternate universe where the agency worked more efficiently, got more money, or somehow got a little lucky, the program’s timetable could be more advanced, and in 2022, an Orion capsule carrying the first humans would be going around the dark side of the Moon now (right now, the target date for that is in 2024).

Moreover, as early as the 2030s, we could shatter our space distance record by sending people to Mars. Depending on where the two planets are in their orbital cycles, the distance between them varies from 33.9 million to 249 million miles. 

That said, I don’t think manned space ships will ever be needed to fix and maintain nuclear-armed satellites or ANY kind of satellites that are as far from the Earth as the Moon. This is because nearly all satellites are within 36,000 miles of Earth, while the Moon is 200,000 miles away. Satellites intended to fire nuclear missiles at Earth would also need to be close to strike targets in a timely fashion–if a satellite at Moon’s distance fired a nuclear missile at Earth, it might take days to reach its target (the Apollo spacecraft took three days), giving the enemy time to see the launch, determine its trajectory, and send its own intercept rockets into space. 

There are androids that can carry on conversations. Spacecore 1’s main computer is embodied by a female android called “Lesli.” She is always seated in a chair in a special room, and she can answer questions about the ship’s systems and many other subjects. As is typical of sci fi films, she speaks in an emotionless voice. This level of AI technology exists: chatbots using GPT-3 technology can converse almost as intelligently and as fluidly with people as Lesli, and speech synthesizer technology exemplified by Amazon Alexa sounds as realistic as Lesli’s voice. 

Lesli the android

Moreover, we can build androids that are almost as lifelike as Lesli. “Ameca” is a crude android with “Smooth, lifelike motion and advanced facial expression capabilities” as well as the ability to move its arms to make human-like gestures. In this demonstration video, Ameca is paired with GPT-3 and a high-quality speech synthesizer to carry on conversations with humans surprisingly well:

“Sophia” is another android, but with artificial skin and colored eyes to make it look more lifelike than Ameca:

Combining Ameca’s superior range of physical movement and facial expression with Sophia’s human-like skin and eyes would result in an android that approximated a human’s appearance reasonably well. It wouldn’t look as real as Lesli from the film, but that’s an unfair comparison since the android was played by a real human actress, and either due to the filmmakers lacking imagination or lacking money, they didn’t give her any makeup or costuming to make her look more robotic. 

Our androids also match Lesli’s level of mobility, which is to say they have none. Lesli has legs, but as stated, she never gets up from her chair, even during a film scene where the evil being attacks and presumably kills her. This indicates that Lesli’s legs are non-functional and are probably just there for show. Ameca also has non-working legs, and Sophia has nothing. 

Though the movie’s depiction of the state of android technology is 2022 is accurate, there are no androids inside any of our spacecraft. This is because space mission budgets don’t allow for wasting money on several hundred pounds of dead weight in the form of a human-sized robot that stays fixed to a chair. Whenever astronauts need to talk to their craft’s central computer, they do so through keyboards and screen displays. All the same intelligence is still embodied in the ship, but without need to a bulky physical manifestation of itself.

There will be artificial gravity. There’s no scene in the film where anyone is weightless (again, this is surely due to a lack of money during production), and Spacecore 1 and Discovery have gravity. In special effects shots of the ships, we never see them rotating, so they weren’t using centrifugal force to create gravity, meaning it was being “generated” from some device in the floor. As I’ve said in previous reviews, this technology is impossible since the laws of physics don’t allow for the creation of gravity this way.  

Astronauts smoke cigarettes inside spaceships. In several scenes, crewmen smoke cigarettes inside Spacecore 1. In reality, this has always been forbidden due to safety concerns (for one, spacecraft have more oxygen-rich atmosphere mixtures than Earth’s, so a lit cigarette is a much worse fire hazard), and there is no record of any person smoking inside any spaceship or space station. Even the Soviets, who were known to be more risk-taking than anyone else, never smoked in space. 

However, in the far future, there will be spaceships that are larger, more advanced, and more luxurious than even Spacecore 1, and they could have small “smoking lounges” that would be sealed off from the rest of the vessel and have design features to filter the smoke from the air and prevent lit cigarettes from sparking fires. At some point in the future, people will smoke cigarettes in space.  

There are guns in space ships for astronauts to use. In the film, there’s a gun rack on Spacecore 1 full of five or six assault rifles. Once things take a turn for the worse, the weapons are distributed and the crewmen start spraying bullets at each other. Ridiculously, the ship’s hull is never punctured. 

There actually have long been guns in space. Soviet/Russian Soyuz space capsules have emergency kits for the cosmonauts to use if they accidentally land in remote parts of Earth and have to wait for rescue. The kits contain semi-auto pistols for defense against wild animals. A Soyuz is permanently docked at the ISS, so there is a gun in space right now that any crewman could grab and use against the others. 

Part of the reason why there has never been a shooting incident in space is that it might be suicidal for the attacker since the bullet could put a hole in the hull, causing the oxygen to leak out, or it could destroy an important system like a pressurized fuel tank or central computer. The more powerful the gun, the higher the risk of such a disaster gets, making an assault rifle a particularly bad choice to put in a spaceship. Even if the shooter hits his human target, a rifle bullet could pass through them and drill through whatever is behind them. 

A small pistol is actually the best choice for any conceivable type of space combat. Its small size makes it ideal for the tight confines of a spaceship or space station, and its weaker bullets 1) minimize recoil forces on the shooter, which is important in the weightlessness of space, 2) are well-suited against people since no one has body armor, and 3) carry less risk of causing collateral damage like hull punctures.  

The Space Shuttles are retired. In the film, it is said that the Space Shuttles were retired in 1992 after the Endeavor’s disappearance. They were actually retired in 2011, due to high operating costs and safety problems. 

In conclusion, as bad as Dark Side of the Moon was, it depicted several aspects of 2022 technology accurately. And where reality did fall short of the filmmakers’ expectations, it was mostly due to us choosing to allocate our money in more sensible directions, and not due to the technology staying fundamentally out of reach for us. We COULD HAVE put nuclear-armed satellites in orbit. We COULD HAVE built a large, manned spaceship to service those satellites. We COULD HAVE put an immobile android in the spaceship to interact with the astronauts. We COULD HAVE also put assault rifles in the ship. 

Thank God we didn’t.

Is this the 2022 we were promised?

On May 7, 1922, an article titled “What the world will be like in a hundred years” appeared in the (now defunct) New York Herald. Its author, W.L. George, was a well-known English novelist. Since we’ve reached George’s deadline, it’s worth analyzing his accuracy by comparing the world as we see it to how he predicted it would be.

Therefore it is without anxiety, that I suggest a picture of this world a hundred years hence, and venture as my first guess that the world at that time would be remarkable to one of our ghosts, not so much because it was so different as because it was so similar.

In the main the changes which we may expect must be brought about by science. It is easier to bring about a revolutionary scientific discovery such as that of the X-ray than to alter in the least degree the quality of emotion that arises between a man and a maid. There will probably be many new rays in 2022, but the people whom they illumine will be much the same.

Correct. X-ray imaging technology was invented in 1895, was a revolutionary medical advance, and was still relatively new in 1922. Since then, many other medical imaging technologies that make use of phenomena other than X-rays have been discovered, including ultrasounds, CAT scans, PET scans, MRIs, and fMRIs. On the other hand, human nature and fundamental interpersonal dynamics have not changed. Our technology changes infinitely faster than we as a species can evolve.

I am convinced that in 2022 the advancement of science will be amazing, but it will be nothing like so amazing as is the present day in relation to a hundred years ago. A sight of the world today would surprise President Jefferson much more, I suspect, than the world of 2022 would surprise the little girl who sells candies at Grand Central Station. For Jefferson knew nothing of railroads, telegraphs, telephones, automobiles, aeroplanes, gramophones, movies, radium, &c.; he did not even know hot and cold bathrooms. The little girl at Grand Central is a blase child; to her these things are commonplace; the year 2022 would have to
produce something very startling to interest her ghost.

Debatable. Today there are many innovations that a person from 1922 would struggle to conceptually understand, like the internet, autonomous cars, space rockets, space stations, video calls, access to a million songs and almost all other human-generated content and knowledge from a pocket-sized device, nuclear weapons, machines that can carry on simple conversations about most topics.

The sad thing about discovery is that it works toward its own extinction, and that the more- we discover the less there is left. 

This is an observation, not a prediction, but it could stand analysis. Whether there is a finite amount that can be known is a question we still haven’t answered. Even if potential knowledge is finite and science has boundaries, it might take us thousands or millions of years to run out of things to discover. Just this month, data from the Hubble Space Telescope indicated that astronomers’ long-standing estimate of how fast the universe is expanding is wrong, suggesting that there is a basic and important error in our understanding of physics. Moreover, if the recent, high-profile UFO sightings are to be believed, it is possible to build space ships that can violate the known laws of physics and materials science.

I suspect that commercial flying will have become entirely commonplace. The passenger steamer will survive on the coasts, but it will have disappeared on the main routes, and will have been replaced by flying convoys, which should cover the distance between London and New York in about twelve hours. As I am anxious that the reader should not look upon me as a visionary, I would point out that in an airplane collision which happened recently
a British passenger plane was traveling at 180 miles an hour, which speed would have brought it across the Atlantic in eighteen hours. It is therefore quite conceivable that America may become separated from Europe by only eight hours.

Correct. It takes about seven hours to directly fly from New York City to London, and about eight hours to do the reverse (times are different due to the Earth’s rotation). Common passenger planes like the Boeing 787 have cruising speeds of 550 – 600 mph. Air travel between Europe and North America is indeed very common.

“Passenger steamers,” which refers to passenger ships of any size that have steam engines for propulsion, are obsolete, and steam engines are little used among all types of ships (they still make sense for some niches). Planes have replaced ships for transoceanic transport, and in rich countries, cars and commuter trains are much more common modes of transport up and down riverine routes than boats. An important exception is short ferry trips, which remain the most sensible ways to travel in some locales.

As a means of everyday human transportation, ships have sharply declined since 1922, but they’ve found new life serving the leisure demands of people. The cruise ship industry is booming, and the boat tour industry is healthy.

The same cause will affect the railroads, which at that time will probably have ceased to carry passengers except for suburban traffic. Railroads may continue to handle freight, but it may be that even this will be taken from them by road traffic, because the automobile does not have to carry the enormous overhead charges of tracks. Certainly food, mails and all light goods will be taken over from the railroads by road trucks. 

Half right, half wrong. In developed countries, trains are used much less for long-distance passenger traffic than they were in 1922, but they are still a primary means of daily transportation for people who live in cities or who commute into them for work. Railroads also remain the backbone of freight transportation. It’s still cheaper to move many types of cargoes by rail instead of by truck, and as the above chart shows, trains moved almost as much cargo in the U.S. as trucks did in 2018. Moreover, the total volume of material moved by rail in the U.S. increased from 1980 – 2018, showing that it’s not dying out.

The people of the year 2022 will probably never see a wire outlined against the sky: it Is practically certain that wireless telegraphy and wireless telephones will have crushed the cable system long before the century is done. Possibly, too, power may travel through the air when means are found to prevent enormous voltages being suddenly discharged in the wrong place.

Mostly wrong. Power lines are underground in most parts of American cities, but they are still above ground almost everywhere else due to cost and ease of maintenance. Wireless telephones (cell phones) are indeed common, but the failure to find a safe, economical way to wirelessly transmit electricity means that power lines are still common sights.

Coal will not be exhausted, but our reserves will be seriously depleted, and so will those of oil. One of the world dangers a century hence will be a shortage of fuel, but it is likely that by that time a great deal of power will be obtained from tides, from the sun, probably from radium and other forms of radial energy, while it may also be that atomic energy will be harnessed. If It is true that matter is kept together by forces known as electrons. It is possible that we shall know how to disperse matter so as to release the electron
as a force. This force would last as long as matter, therefore as long as the earth itself.

This was half right, half wrong. We have used enormous amounts of fossil fuels over the last 100 years, but they are not near depletion. Coal reserves remain highest of all, and BP estimates the world has over 100 years of it remaining, at present usage rates. Oil is not close to running out, and fracking has substantially boosted the size of the global reserve.

Tidal power never became widespread because the technology proved too finicky in practice to be useful outside of a small number of places with ideal geography.

In 1922, when these predictions were made, science supported the notion that sunlight and radioactive metals could be used to generate electricity, so the author’s prescience about the rise of solar and nuclear energy was not thanks to clairvoyance–he was well-read on physics literature. That said, it took decades for the first commercial designs to be invented.

The movies will be more attractive, as long before 2022 they will have been replaced by the kinephone, which now exists only in the laboratory. That is the figures on the screen will not only move, but they will have their natural colors and speak with ordinary voices. Thus, the
stage as we know it to-day may entirely disappear, which does not mean the doom of art, since the movie actress of 2022 will not only not need to know how to smile but also how to talk.

Correct. Movies started looking and sounding lifelike long before 2022. However, “the stage” did not entirely disappear. Live theatre plays are still held, though attending them is a marker of higher status (or pretensions to be such), whereas in 1922 it was a common venue of entertainment. This inversion also happened with horse ownership over the same period.

One might extend indefinitely on the number of inventions which ought to exist
and will exist, but the reader can think of them for himself, and it is more interesting to ask ourselves what will be the appearance of our cities a hundred years hence. To my mind they will offer a mixed outlook, because mankind never tears anything down completely to build
up something else; it erects the new while retaining the old; thus, many buildings now standing will be preserved. It is conceivable that the Capitol at Washington, many of the universities and churches will be standing a hundred years hence, and that they will, almost unaltered, be preserved by tradition.

Correct. It’s hard to think of a government capitol building in the U.S. that has been torn down since 1922, and it’s common to come across university buildings, churches and monuments that are over 100 years old today. If anything, we are taking historical building preservation too far, preventing valuable real estate from being used for new purposes. This is particularly bad in older cities like New York and San Francisco, where the inability to tear down smaller buildings and houses made in 1922 or earlier, or to even build contemporary structures next to them for fear of damaging the historic authenticity of the neighborhood, has produced affordable housing shortages and high commercial space rents.

Also, many private dwellings will survive and will be inhabited by individual families. I think that they will have passed through the cooperative stage, which may be expected fifty or sixty years hence, when the servant problem has become completely unmanageable and when private dwellings organize themselves to engage staffs to cook, clean, and mend for the groups. That cooperative stage will be the last kick of the private mistress who wants to retain in her household some sort of slave. In 2022 she will have been bent by circumstances, but she will have recovered her private dwelling, being served for seven hours a day by an orderly. The woman who becomes an orderly will be as well paid as if she were a stenographer, will wear her own clothes, be called “Miss,” belong to her trade union and work under union rules.

Wrong. This prediction touches on some peculiarities of life in 1922 that are almost forgotten today. Widespread poverty and sexism created a large number of women who were desperate for work, but could only find it in a handful of career fields that men eschewed. In 1922, it was much more common for women to work as domestic servants, and each day they would go to the houses of richer people to do cleaning, cooking, and other household tasks. Additionally, it was normal for even lower-middle-class households to employ domestic servants.

In 1922, labor-saving machines like dishwashers, clothes washers, and vacuum cleaners were not yet common, and because the average family was larger than today’s, it produced more of a daily mess. Most households simply lacked the time to meet their own cleaning and cooking needs, making domestic servants essential, or close to it.

At the same time, few people were willing to pay maids, cooks, and cleaners decent wages, making domestic servitude an unpopular and low-status line of work. There were never enough of them. The “servant problem” mentioned in the prediction was a common term in 1922 that described the shortfall of domestic servants in America. W.L. George predicted that the shortfall would keep growing until families would be forced to take advantage of economies of scale and get their domestic work done at an affordable cost by sharing servants. However, that “cooperative” arrangement would ultimately fail as the domestic servants unionized and forced households to give them high wages and reasonable workloads.

Things didn’t turn out that way. Labor-saving household innovations like the machines listed earlier, and like microwaveable and pre-packaged meals became widespread shortly after WWII, reducing the need for home servants. Clothing styles also became less formal, reducing the need to launder and iron clothes. Also, as laws and social norms changed, better types of careers opened for women, steadily thinning the ranks of domestic servants. By the 1970s, they had become rarities seldom encountered outside of rich households.

Naturally the work of the household, which is being reduced day by day, will in 2022 be a great deal lighter. I believe that most of the cleaning required to-day in a house will have been done away with. In the first place, through the disappearance of coal in all places where electricity is not made there will be no more smoke, perhaps not even that of tobacco. In the second place I have a vision of walls, furniture and hangings made of more or less compressed papier mache, bound with brass or taping along the edges. Thus, instead of scrubbing its floors, the year 2022 will unscrew the brass edges or unstitch
the tapes and peel off the dirty surface of the floor or curtains. Then every year a new floor board will be laid. One may hope that standard chairs, tables, carpets, will be peeled in the same way.

Half right and half wrong. Thanks to environmental laws enacted starting in the 1950s, levels of soot and other industrial toxins in the air are much lower than they were in 1922, and there are few places in the developed world where people have to scrub residue films off their houses and cars. W.L. George was right that this partly owes to changes in coal use: coal-burning stoves and boilers are no longer common in homes, buildings and factories, and the remaining coal consumption overwhelmingly occurs at large power plants. Those plants also have much better technology for filtering particulates out of their waste gas before it is released into the atmosphere.

W.L. George was also right that it would be much less common in 2022 for people to smoke indoors, leading to a further improvement in air quality and decreased need for cleaning since brownish nicotine stains no longer build up on walls and other surfaces.

However, his weird prediction that people would cover their floors and furniture in giant stickers that they could peel off and replace to avoid doing any cleaning didn’t come true. The impracticality of such a thing should have been obvious even in 1922, as getting a sticker that is the exact shape and size of the floor in a particular room of your house, removing all the objects from the room, peeling off the old sticker, applying the new sticker, and then putting the objects back in the room costs a lot of time and trouble. (Additionally, applying the new floor sticker without trapping any visible air bubbles under it or creating creases in it would probably be a frustrating effort) It’s easier to sweep or vacuum the bare floor as needed.

Similar reforms apply to cooking, a great deal of which will survive among old fashioned people, but a great deal more of which will probably be avoided by the use of synthetic foods. It is conceivable, though not certain, that in 2022 a complete meal may be taken in the shape of four pills. This is not entirely visionary; I am convinced that corned beef hash and pumpkin pie will still exist, but the pill lunch will–roll by their side.

Wrong. While culinary competence has declined in most countries, people still eat regular food, and “meal pills” don’t exist. This is because it’s impractical to cram enough calories into a swallowable pill to substitute for a full meal.

You’d have to swallow about this many large pills full of saturated fat to equal what you consume during a typical meal.

Saturated fat is the most calorie-dense substance, and “tallow” is the food product made of it and nothing else. One-hundred grams of tallow contains 902 calories, so obtaining a full day’s worth of 2,000 calories would require the consumption of 222 grams (nearly 8 ounces) of it. Divided equally between three meals, you’d have to swallow a literal cupped handful of tallow pills each time. It wouldn’t be convenient, it might take longer than expected to down them all, and the sudden dumping of fat into your body would cause havoc in your digestive system and damage your health over time if you subsisted on the pills. It wouldn’t be possible to pack 667 calories of tallow into four pills that would still be small enough for you to swallow, as W.L. George predicted.

Anyway, I doubt we missed out on anything. Eating food is one of the great pleasures in life.

But at that time few private dwellings will be built: in their stead will rise the community dwellings, where the majority of mankind will be living. They will probably be located in garden spaces and rise to forty or fifty floors, housing easily four or five thousand families. This is not exaggerated, since in one New York hotel to-day three thousand people sleep every night. It would mean also that each block would have a local authority of its own. I imagine these dwellings as affording one room to each adult of the family and one room for common use. Such cooking as then exists will be conducted by the local authority of the block, which will also undertake laundry, mending, cleaning and will provide a complete nursery for the children of the tenants.

Wrong. Most people in the world do not live in high-rise co-op apartments. Moreover, residential skyscrapers that are over 40 stories high are rare outside of major cities, and they tend to be prestige locations where richer people live.

While the share of humans that live in urban areas has greatly increased since 1922–and in fact, more people now live there than in rural areas–they mostly live in low-rise apartment buildings, rowhomes, detached homes, and slum shacks that would be recognizable in proportions and style to W.L. George. Services like meals, laundry, and childcare are rarely provided by landlords, and most people today either provide them for themselves or obtain them through the private market and pay out-of-pocket.

Perhaps at that time we shall have attained a dream which I often nurse, namely, the city roofed with glass. That city would be a complete unit, with accommodations for houses, offices, factories and open spaces, all this carefully allocated. The roof would completely do away with weather and would maintain an even temperature to be fixed by the taste of the
period. Artificial ventilation would suppress wind. As for the open spaces, if the temperature were warm they would exhibit a continual show of flowers, which would be emancipated from winter and summer; In other words, winter would not come however long the descendants of Mr. Hutchinson might wait.

Wrong. This quote explains why:

The construction of the Montreal Biosphère, a 250-foot diameter climate controlled World Expo attraction, proved incredibly difficult. And when people built domed houses and other buildings, they tended to leak, requiring frequent and expensive maintenance. Would a domed city really result in energy savings, given the enormous volume of air conditioned, largely unused, space? Decades later, we may have a solid answer: No…[Buckminster] Fuller long promised that domes would be essential to the occupation of the Arctic, Antarctic, and other planets, but there too, reality has fallen short. From 1975-2003 the Amundsen–Scott South Pole Scientific Station was encased inside a 160-feet-wide dome, but reviews were mixed. The dome could keep snow off the buildings inside, but not off of the dome itself, where it accumulated. Eventually, the entire station found itself buried in snow and, by 1988, the dome’s foundation was cracking spectacularly under the pressure. Today, the gold standard for Antarctic architecture is not domes, but modular units that can be elevated to escape an icy burial.

https://www.inverse.com/article/15868-the-domed-city-is-dead-on-arrival-and-sorry-buckminster-fuller-was-always-dumb

The family would still exist, even though it is not doing very well to-day. It is inconceivable that some sort of feeling between parents and children should not persist, though I am of course unable to tell what that feeling will be. I imagine that the link will be thinner than it is to-day, because the child is likely to be taken over by the State, not only schooled but fed and clad, and at the end of its training placed in a post suitable to its abilities.

Part right, part wrong. The traditional family has certainly declined over the last 100 years: divorce, single-parent households, and children born out of wedlock are many times more common now, with most deleterious effects on everyone (a good roundup of statistics is here: https://lanekenworthy.net/families/). However, things have fortunately not gotten so bad that the government raises children in orphanages as a matter of course. The only country I know of that tried such a policy was communist Romania, which banned abortion in 1967 in a deliberate attempt to spur population growth and increase the number of workers. The result was a humanitarian tragedy, as hundreds of thousands of unwanted children were born each year, many of whom ended up in the country’s state-run orphanages. Lack of resources, neglect, and abuse left them permanently traumatized and stunted. It was a disaster that showed the government is totally unsuited for the child-rearing role W.L. George envisioned.

This may be affected by birth control, which In 2022 will be legal all over the world. There will be stages: the first results of birth control will be to reduce the birth rate; then the State will step in as it does in France, and make it worth people’s while to have more children; then the State will discover that it has made things too easy and that people are having children recklessly; finally some sort of balance will establish itself between the State demand for children and the national supply.

The map shows abortion rights by country

Unclear! First, what does “legal all over the world” mean? Legal in every country, or in a group of countries encompassing most of the human population, or something else? And what counts as “legal”? Countries that let women get abortions at any stage of pregnancy and for any reason, or would W.L. George be satisfied with countries that still applied significant restrictions on abortion, like a ban on doing it in the third trimester (a common limitation in Europe)?

Globally, abortion access has decreased the fertility rate, but so have other major factors like greater career opportunities for women, higher costs of raising children, and a diminished cultural emphasis on having children. As a result, many rich and even middle-income countries have such low birthrates that their populations are shrinking or will soon start doing so. W.L. George was right to foresee that some governments would recognize the problem and enact policies to incent their citizens to have more children (China’s abandonment of its One Child policy, and the generous welfare programs in Western Europe for mothers are the most notable examples), though at best these have merely slowed the rate of population decline. Encouragement of immigration has become the preferred policy response, though East Asian countries seem resigned to accepting decline.

A “balance” to the population growth rate has not been achieved in any country as of 2022, unless by pure luck and not through focused government policy and the compliant behavior of citizens. Globally, the rate and distribution of human population change is uncoordinated and unbalanced: Most of the population growth is happening in places that are the least able accommodate more people, economically and environmentally.

Largely the condition of the family will be governed by the position of woman, because woman is the family, while man is merely its supporter. It is practically certain that in 2022 nearly all women will have discarded the idea that they are primarily “makers of men.” Most fit women will then be following an individual career. All positions will be open to them and a great many women will have risen high. The year 2022 will probably see a large number of women in Congress, a great many on the judicial bench, many in civil service posts and perhaps some in the President’s Cabinet.

Correct, so long as we exclude large parts of the world where conservative religious values still dominate. Focusing on the U.S., it is true that “most fit women,” which is probably another way of saying “most healthy women of working age,” have jobs. The figure is 76%, much higher than it was 100 years ago. The law prohibits hiring on the basis of sex and other demographic factors, so all jobs are technically open to women.

In Congress, 27% of the House consists of female Representatives, and in the Senate, 24% of its membership is female. It would be fair to call those a “large number” of women, and in fact, female representation in Congress is at a record high in 2022. Three of the nine Supreme Court Justices are women, and their number will grow to four once Stephen Breyer retires and is replaced by Ketanji Brown Jackson. Half of the members of President Biden’s cabinet are female, including its most important member, Vice President Harris.

But it is unlikely that women will have achieved equality with men. Cautious feminists such as myself realize that things go slowly and that a brief hundred years will not wipe out the effects on women of 30,000 years of slavery. Women will work, partly because they want to and partly because they will be able to. Thus women will pay their share in the upkeep of home and family. The above suggestion of community buildings, where all the household work will be done by professionals, will liberate the average wife and enable her out of her wages to pay her share of the household work which she dislikes.

This is partly correct. Even in countries with progressive values, women have yet to achieve full equality with men in a number of important areas, mainly related to money and educational achievement. Contrary to the author’s view, motherhood has not been rendered obsolete by communal childrearing, and in fact it remains as probably the biggest impediment to sex equality. Women still do the lion’s share of household labor, even if they also have full-time jobs outside the home, and mothers are much likelier to drop out of the workforce to raise their children or to eschew more demanding jobs for the same reason.

Marriage will still exist much as it is to-day, for mankind has an inveterate taste for the institution, but divorce will probably be as easy everywhere as it is in Nevada. In view, however, of the improved position of woman and her earning power, she will not only cease to be entitled to alimony, but she will be expected, after the divorce, to pay her share of the maintenance of her children. 

The author’s predictions are wrong for being both too conservative and too liberal! In 1922, Nevada had the most lax divorce laws in America, and couples could be granted a divorce for almost any reason. However, doing so required at least one of them to first establish legal residency, which required them to live in Nevada for at least six months. This created a strange, churning diaspora of people who were biding their time in the state for half a year to obtain divorce decrees. It disappeared later in the 20th century as other states made their own divorce laws less strict, removing the need for anyone to visit Nevada. In 2022, it’s much easier to get a divorce in America.

On the other hand, alimony laws have not changed nearly as much, and it’s the norm for women to be awarded sizeable alimonies from their ex-husbands upon divorce. Income and net worth determine the size and direction of alimony payments, and since men are likelier to make more money than their wives, most of the divorcees who receive alimony payments are women.

As regards the politics of 2022, I should expect the form of the State to be much the same. A few rearrangements may have taken place on the lines of self-determination; for instance, Austria may have united with Germany, the South American republics may have federated, &c, but I do not believe that there will be a superstate. There will still be republics and monarchies; possibly, in 2022, the Spanish, Italian, Dutch and Norwegian kings may have fallen, but for a variety of reasons, either lack of advancement or practical convenience, we may expect still to find kings in Sweden, Jugo-Slavia, Greece, Rumania and Great Britain.

This prediction was mostly correct. When the author says the basic “form of the State” will not have changed by 2022, it’s unclear whether “form” refers to the shapes and boundaries of countries or to the status of countries as the essential political units of the world. As the 1922 political map below shows, some borders have radically changed (Africa and Asia) while many others have not shifted at all (the Americas).

In spite of a lot of hoopla about transnational corporations becoming stronger than countries, terrorist groups and drug cartels carving out territories for themselves, and globalization erasing borders, the nation-state system still reigns supreme. For better or worse, central governments matter, national identity matters, and borders matter. Indeed, there is no global superstate, we are not poised to create one, and the continent that is closest to transforming into one, Europe, might have already reached the limits of how much integration its people will allow.

The author was right that the nation-states of 2022 would be governed by a mix of republics and monarchies, though his specific guesses of which European monarchies would survive were wrong: the Spanish, Dutch and Norwegian royal families HAVE NOT fallen from power, but the Yugoslavian, Greek, and Romanian royal families HAVE fallen.

Overall, monarchies have weakened over the last 100 years: the number of countries with monarchical governments has declined, the fraction of the human population living under monarchies has declined, and the amount of political power held by the remaining monarchs is generally less than their ancestors had in 1922.

On the inside, these States may have slightly changed, for there prevails a tendency to socialization which has nothing to do with socialism. Most of the European governments are unconsciously nationalizing a number of industries, and this will go on. One may therefore presume that in 2022 most States will have nationalized railways, telegraphs, telephones, canals, docks, water supply, gas (if any) and electricity. Other industries will exist much as they do to-day, but it is likely that the State will be inclined to control them, to limit their profits, and to arbitrate between them and the workers. We find a hint of this in America in the anti-trust acts; a hundred years hence the tendency will be much stronger. It is worth noting as an international factor that by that time purely national industries will almost have disappeared, and that the work of the world will be in the hands of controlled combines governing the supply of a commodity from China to Peru.

Across the Western world, people were still adjusting to the dislocations of the Industrial Age, and laws and social attitudes lagged behind economic realities. Cities were overcrowded with people seeking work in factories, there were few laws pertaining to labor rights or building standards, and a huge wealth gap existed between the capitalists who owned the factories and land, and the people who worked in and lived on them. The Bolshevik Revolution had just happened in Russia, Vladimir Lenin was still alive, and Communist forces worldwide had not yet killed or let starve millions of people. Communist ideology had not yet been discredited, and its leaders and adherents could still have reason to believe it was a superior and even inevitable alternative to capitalism.

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/coal.html

https://www.theatlantic.com/business/archive/2015/09/decline-domestic-help-maid/406798/

https://www.medindia.net/nutrition-data/fat-beef-tallow.htm

https://www.brookings.edu/essay/the-history-of-womens-work-and-wages-and-how-it-has-created-success-for-us-all/
https://www.pewresearch.org/fact-tank/2021/01/15/a-record-number-of-women-are-serving-in-the-117th-congress/

Review: “Soylent Green”

Plot: Welcome to 2022. Welcome to a grotesquely overpopulated, resource-depleted, polluted, and impoverished world. It’s a place where practically every tree has been cut down and every person herded into cities to make room for farms that nevertheless barely make enough food for everyone, where the air is sticky and thick with toxic smog and the stench of unwashed bodies and corpses, and where the hungry masses are perpetually on the brink of rioting. There’s no joy, hope, jobs, or even real food anymore–just little processed crackers rationed to the population. It’s a place where corrupt politicians and the executives of corporations collude to protect their own power and privileges at any cost, even if it means forcing the ultimate sacrilege on humanity.

Manhattan, 2022

Welcome to New York City. It’s a decaying and crime-ridden cauldron that is so crowded it’s literally standing room only in many of its apartments and streets. Charlton Heston knows this city well, and keeps busy in it. He’s a homicide detective, and of such esteem that he enjoys the privilege of having his own, small apartment, which he shares with only one other person: his elderly assistant named “Sol.” Their dreary routine is interrupted one day when they are assigned to investigate the murder of one of New York’s richest people–a man named “Simonson” who was a Board member at the “Soylent” corporation.

Soylent is an enormous food processing company that controls half the world’s food supply. Their “Red” and “Yellow” products are derived from plants, and are formed into crackers or loaves. Their latest product, “Green,” is said to be derived from plankton harvested from the ocean. Soylent Red, Yellow and Green are staple foods for New Yorkers, and probably billions of people beyond.

Soylent foods for sale at a New York market

As the investigation proceeds, Heston quickly realizes Simonson’s murder was no robbery gone bad, as it appeared at first glance. As he and Sol follow the clues, it leads them to mortal danger, a conspiracy involving some of the world’s most powerful men, and to a profoundly disturbing secret about the food supply.

Soylent Green was a laugh-out-loud inaccurate portrayal of the world in 2022. Yeah, I know we have our problems, but they don’t compare to the film’s dystopia. The fact that it was so far off the mark should be FOOD FOR THOUGHT for anyone who takes the current crop of doomsday global warming movies set in the future (e.g. – Geostorm, Snowpiercer, Interstellar) seriously.

That said, I still liked Soylent Green and think it’s worth watching so long as it isn’t taken seriously. The movie is well-paced and manages to depict a grim future without overdoing it to the point of being depressing. It’s both entertaining and serious, and at times genuinely tense. The acting is great all around, especially on the part of Charlton Heston, who is less cocky and has a slightly broader emotional range in this than in most of his other roles.

Analysis:

The world will be grossly overpopulated. At the beginning of Soylent Green, we’re told that New York City’s population has grown from roughly 8 million the year the film was released (1973) to 40 million in 2022. Population figures for other parts of the U.S. or for other countries are never given, but at one point Heston says other cities are “all like this,” implying the rest of the world is similarly overpopulated.

The U.S. population in 1973 was about 205 million, and the world population that year was 3.7 billion. If they quintupled like New York City, then in the film, the U.S. population in 2022 was 1 billion, and the world population was 18.5 billion.

Mercifully, the real figures are much lower: New York City has 8.8 million residents, the U.S. has 330 million, and the world has 7.9 billion. Soylent Green‘s prediction that Earth would be grossly overpopulated by 2022 was wrong, and the city in which it is set, New York, has only 11% more inhabitants now than it did in 1973. Instead of it being “standing room only,” the city is but marginally denser.

Outside of the tropical countries and Muslim world, population is growing very little and is even shrinking

Ironically, a growing number of thinkers and journalists today are worried about the opposite problem: population decline. The populations of rich countries are mostly shrinking, or are only slowly expanding thanks to immigration and immigrants having kids. Even middle income countries like China, Thailand and Brazil have seen sharp drops in birthrates and have almost stopped growing. While shrinking a shrinking population has benefits (more space per person, cheaper real estate, less traffic, less pollution created), they are probably outweighed by the downsides of economic decline.

That said, it would be a mistake to simply extrapolate current demographic trends into the future indefinitely and to conclude that the human race is doomed to extinction because people will refuse to have kids. A slew of technologies that will come into existence this century will raise birthrates in various ways: Existing assisted reproductive technologies like in vitro fertilization (IVF) will get cheaper, putting them within reach of lower income people. New reproduction technologies will be invented, allowing more people with fertility problems to have healthy kids. For example, post-menopausal women with no eggs will be able to have fertility labs synthesize ova for them that contain their DNA, and to insert it into themselves, younger surrogate mothers or, in the far future, artificial wombs. Robot servants will also ease household workloads, giving parents more time for child-rearing and making parenthood more appealing.

Along with raising birthrates, future technologies will let us grow the human population through the opposite mechanism, which is lowering mortality rates. Disease cures, therapeutic cloning of human organs, cybernetic replacements for organs and limbs, stem cell therapies that regenerate ageing tissues and organs inside the patient’s body, and many other medical advances, will slowly raise lifespans, and to such an extent that “medical immortality” will probably be available to well-resourced people by the end of this century. If people don’t die, then even a very low birthrate among them will lead to Soylent Green levels of overpopulation, though it might take centuries.

The environment will be devastated by pollution. The other aspect of Soylent Green‘s dystopian reality is severe pollution and concomitant environmental devastation. The outdoor scenes–which are already bleak-looking since they are full of derelict buildings, trash-strewn streets and crowds of poor people–are shrouded in a sickly greenish haze, which is certainly smog. New York City is devoid of trees, except a few saplings in a small, sealed arboretum (presumably necessary to protect them from air toxins) that only privileged people can enter.

A sealed arboretum containing NYC’s only trees

The oceans are also so poisoned and overfished that plankton are the only remaining edible sea life. The Soylent company processes harvested plankton into green crackers for human consumption, and the film’s big reveal is that it has been secretly transitioning their content to human flesh because even plankton is dying out. In other words, “SOYLENT GREEN IS PEOPLE!”

Manhattan in 2021

This depiction of 2022 is almost totally wrong. New York City still has trees growing outdoors–notably in the massive Central Park. Additionally, the U.S. actually had more trees in 2021 than it did in 1921! The amount of global tree cover also increased by 8% from 1982 to 2016.

Instead of disappearing, global seafood harvests have risen since Soylent Green was in theaters, and there are no signs of an impending collapse of wild fisheries, though fish catches have been flat since the 1990s, suggesting we’ve reached the limit of how many wild calories the seas can sustainably provide us. Fortunately, the human race has proven itself more competent at surmounting this barrier than it was in the movie, and a large and growing share of fish are now “farmed” instead of caught wild.

Though the oceans still supply us with plenty of calories, a large and growing share of seafood comes from “fish farms,” labeled “aquaculture” in this graph.

New York City’s air is not full of smog, and its air quality is in fact substantially better than it was when the film was released. As just one example, sulfur dioxide (SO2) concentrations in the City’s air have sharply dropped, from an average of 155 μg/m3 from 1970-72, to a mere 6.8 μg/m3 today (January 24, 2022). (SO2 is the main component of “smog,” and has an opaque appearance. It causes respiratory problems and acid rain.) Every other type of air pollution (i.e. – PM 2.5, ozone, lead, nitrogen dioxide (NO2)) has sharply dropped in New York City, the rest of America, and the rest of the developed world over the same timeframe, meaning they breathe cleaner air today than people did when Soylent Green was in theaters. This is due to a slew of environmental laws being enacted, including the U.S. Clean Air Act of 1963 and the Clean Water Act of 1972. (U.S. air and water pollution levels had actually been trending down for a short time before Soylent Green‘s 1973 release.)

Delhi, India during its November 2021 smog emergency

Unfortunately, those things aren’t true for the poorer half of the global population, and hundreds of millions of people in India and China endure toxic air, mostly due to weak air pollution laws or to lax enforcement of relevant laws. In fact, in November 2021, Delhi had a smog emergency lasting several days, during which the air became so poisonous that the government shut down the city’s schools. The news images of opaque air, crowded streets, poverty, and decay bear striking similarities to the dystopian New York of Soylent Green. The suffering of people in polluted places like northern India is why I judged “This depiction of 2022 is almost totally wrong.”

Winters in temperate areas will be warm thanks to global warming. Though the movie indicates it is set in the year 2022, no clues are given about the exact dates of its events. Based on the facts that most of the characters wear light clothing, and there are several scenes where they are visibly sweating, it would seem it is set in the summer. However, that assumption is upended by a remark Heston makes when contemplating whether to turn on an air conditioner (a rare luxury): “All the way up. We’ll make it cold. Like winter used to be.”

Evidently, global warming has gotten so severe that even in places with slightly cold climates like New York City are hot in the winter!

Fortunately, this prediction about 2022 also fell flat. Global warming has only had a tiny effect on the city’s temperature. According to NOAA data taken from a weather station that has been operating in Central Park since 1869, NYC’s average temperature for all of 1973 (the year Soylent Green was released) was 56.1°F, and the average for that December was 39.0°F. The average temperature for 2020 (the last year for which full data have been published) was 57.3°F, and that December’s average temperature was 39.2°F.

And on the day I analyzed this prediction (January 26, 2022), New York City’s high temperature was 29°F, and it was bracing for a major snowstorm.

There will be tablet computers. Though we never get a good look at them or see how they work, there appear to be simple tablet computers and PDAs in the film. Heston keeps one of them in his apartment, and in the film’s first scene, Sol reads notes about criminal cases off of it. The device is a piece of transparent plastic, about the size and shape of a magazine, with an opaque layer embedded within it bearing written characters.

Heston’s tablet computer, displaying Sol’s suicide note

It is strongly reminiscent of an actual tablet computer that lets users handwrite digital notes on its screen by using metal styluses. This prediction about 2022 was right.

The “ReMarkable 2” tablet, displaying something more cheerful than a suicide note. It is new for 2022.

People will have computer game machines in their homes. Early in the film, there’s a scene set in Simonson’s luxury condo suite. There we see an arcade-style video game. To be exact, it is “Computer Space,” which was the first commercially successful video game in history, and only made its debut two years before Soylent Green was released.

A privately-owned computer arcade game

In 2022, it is very common for people to have video game consoles in their homes and to play games on their computing devices. If anything, the film’s prediction is too conservative since it depicts video games as being only available to rich people, whereas in reality, even a teenager working a part-time job today could afford a quality console and several games.

The government will ration essential goods. Due to dwindling natural resources, an excessive population, and widespread poverty that leaves most people unable to afford anything, the government rations essential goods, notably food and water. Citizens visit government offices where clerks give them their allotments of money or ration cards, which they exchange with other people in New York to get essential goods. In other scenes, we see private merchants selling Soylent food products in an open-air market, and men in official uniforms using an outdoor water tap to fill the jugs belonging to people who need their daily water rations. The film also implies that other basics, like soap, writing paper, and pencils, are also very hard to get.

A rationing office run by the government

For the U.S. and the developed world more broadly, this is inaccurate. Staple foods, potable water, and everyday items like soap are very cheap. For example, by cooking their own meals at home, an adult could easily get their food budget under $10 per day, and by drinking only tap water or some type of beverage mix like “Tang,” get their daily drink budget below $1. A bar of personal soap cost $1.50, and will last a person for weeks.

A visit to a typical American grocery store in 2022, even in poorer parts of the country, will reveal a cornucopia of food and merchandise at low prices. Additionally, thrift stores are practically everywhere, and are bursting with wide varieties of decent-quality secondhand goods at very low prices. Electronic resources like Craigslist.org, Facebook Marketplace, and Freecycle are also major sources of cheap or even free items available locally. If anything, most of the world is now contending with a surfeit of essential goods, which too often are wasted, thrown out, or allowed to accumulate as unused clutter. Growth of the self-storage industry bears further testimony to this reality. People, Americans in particular, have too much stuff, not too little.

Prostitution will be legal. One of Soylent Green’s main characters is “Shirl” (pronounced almost the same as “Cheryl”), a young woman prostitute who is compensated with free housing and amenities in Mr. Simonson’s luxury condo. The arrangement is legal and accepted as normal, and it is later revealed that the condo building has several other prostitutes, euphemistically termed “furniture,” living in other units. Having a live-in prostitute is an expensive marker of high status, and Heston’s suspicions are raised when, while investigating Simonson’s death, he discovers the latter’s bodyguard has “furniture” in his own apartment in spite of a salary that should be insufficient.

Prostitutes having a party

In real life, prostitution is illegal in New York City, and in the rest of the U.S. except Nevada. There, it is confined to a small number of heavily regulated brothel houses. With varying restrictions, prostitution is legal in about 15 countries, mostly in Europe. Nevertheless, as the revelations about Jeffrey Epstein’s high-end prostitution ring–which included sex parties at his luxury Manhattan townhouse–show, it’s still easy for rich men to buy sex in New York.

A small number of industrial food companies will control the global food supply. “Soylent” is clearly the dominant food producer in the U.S., and perhaps the world. As Sol says after researching it: “Soylent controls the food supply for half the world.” It’s unclear who produces the other half, but other big companies and government agricultural agencies probably dominate it.

A small number of food processing companies own many common food and beverage brands. But does that mean they “control the global food supply”?

The world is certainly full of large, highly profitable food processing companies, but none is so big that it controls anywhere near half of the global food supply. Consider the top ten food and drink companies of 2020, along with their food sales for that year:

  1. PepsiCo, Inc. – $70.3 billion
  2. Nestle – $67.7 billion
  3. JBS – $50.7 billion
  4. Anheuser-Busch – $46.9 billion
  5. Tyson Foods – $43.2 billion
  6. Mars – $37.0
  7. Archer Daniels Midland – 35.4 billion
  8. The Coca-Cola Company – $34.3 billion
  9. Cargill – $32.4 billion
  10. Danone – $26.9 billion

If we assume that these ten companies produced all the calories consumed by all humans in 2020, and use revenues as a proxy for calories each produced, then the largest, PepsiCo, only controls 15.8% of the food supply.

Of course, the top 10 food processing companies aren’t really the only ones in existence. The source from which I got the above data actually lists revenue figures for the top 100 companies in the sector. If we include them in the calculation (BTW, rank #100 goes to the “Kewpie Corporation,” which made $3.6 billion in 2020 selling mostly mayonnaise, salad dressing, and baby food in Japan), then big companies sold $1,316 billion of food and beverages in 2020, and the biggest one, PepsiCo, only controls 5.3% of the global market. The top ten combined only control 33.8%.

The darkness of the country indicates what share of its population is engaged in sustenance farming.

Additionally, sustenance farming and the consumption of food made by small, local farms still provides most of the calories for large fractions of the population in Africa and southern Asia. These people eat little or nothing made by the big food processing companies, meaning PepsiCo’s control over global calories should be even lower than the paltry 5.3%.

In rich countries with declining culinary traditions, like the U.S., it is probably common for people to get most of their daily calories from processed foods. However, the foods are still made by several different, competing food processing companies, so there is no monopoly and hence no real-world equivalent to “Soylent.” Even if the biggest one of those companies decided to start secretly blending calories derived from corpses into its food products, only a minority of the U.S. population would end up eating it.

New York City’s population will be 90% white. All of Soylent Green‘s main characters and seemingly 90% of its extras are white. This includes rich, working-class, and poor people.

The reality is very different. The U.S. Census estimated that, in 2021, only 32.1% of New Yorkers were both white and non-Hispanic. Blacks were 24.3%, Asians were 14.1%, and multiracial people were 3.6%. It is surely one of the most racially diverse cities on Earth.

There will be mass unemployment. In the first scene, Heston remarks “There are 20 million guys out of work in Manhattan alone.” Even if this is exaggerated and the real number is only half that figure, and even if “guys” refers to both sexes, it would indicate a staggeringly high unemployment rate.

To be generous, let’s assume that Soylent Green‘s New York had an excellent dependency ratio of 80, meaning 80% of its population was in good health and able to work (children, old people, and disabled people comprise the other 20%). For comparison, NYC’s actual dependency ratio in 2021 was 54.7, and dependency ratios in the 80s have only happened after periods of extraordinary population growth, such as when the post-WWII baby boom generations in India and South Korea hit adulthood.

Eighty percent of 40 million is 32 million, meaning there were 32 million potential adult workers in the city. If 10 million of them (half of Heston’s figure) couldn’t find jobs, that equates to a 31.25% unemployment rate. To put that into perspective, during the Great Depression, the U.S. national unemployment rate peaked at 24.9%. Remarkably, even with optimistic assumptions, the job picture was worse than it had ever been in real life!

What happens if we adjust the calculations to be more bleak? For example what if we lower the dependency ratio to 65 (many of the New Yorkers looked unhealthy and seemed to have motivation problems, both of which would leave them unable to work) and accept Heston’s “20 million guys out of work” figure?

We get a 76.9% unemployment rate, which is unheard of. I can’t imagine a situation where that many willing people wouldn’t be able to find jobs, except maybe the first few weeks following a massive nuclear war. That said, I foresee a day when 76.9% of healthy adults won’t have gainful jobs due to machines doing the work for them, but most of those people won’t be “unemployed” since they’ll embrace (or at least, deal with) the new reality by devoting their time to things other than work, like socializing, video gaming, doing drugs, traveling, or indulging in personal hobbies and niche interests. You don’t count as “unemployed” if you’re not interested in working.

Oh, and what’s New York City’s actual unemployment rate? In December 2021, it was 8.8%, which is high by real-world U.S. standards, but absolutely stellar by Soylent Green‘s.

There will be mass homelessness. Along with lacking jobs, most of the people in the film seem to lack homes. Every morning, Heston has to literally jump over poor people who sleep on the staircase of his apartment. Many of New York’s streets are clogged with broken-down cars that people live in, and sleeping people literally cover the whole floor of his local church at night. Most of the city’s population might be chronically homeless.

Heston jumping over poor people

In reality, no more than 1% of New York City’s population is truly homeless, meaning they either sleep in public spaces or in homeless shelters. And unlike in Soylent Green, most of them only go without proper housing for brief lengths of time, and aren’t “chronically” homeless.

New York City will have epidemic levels of violent crime. Soylent Green begins with a murder, later in the film there’s a street riot where several police officers are attacked and people are shot, and in one scene, the police chief says there were 137 murders in the city over the previous 24 hours. In short, New York City is extremely violent. How accurate was this depiction?

If we assume 137 murders a day is typical, that’s equivalent to 50,005 per year, and a homicide rate of 125 per 100,000 residents. In reality, New York City had 485 murders for all of 2021, meaning its homicide rate is a mere 5.5 per 100,000 residents.

Among big American cities, the most murderous is Louisville, Kentucky, which had 188 murders in 2021, equating to a homicide rate of 30 per 100,000. That means no major urban area in the U.S. comes close to being as violent as Soylent Green‘s New York was.

That said, there are cities outside the U.S. that approach its heights of murder. In 2020, three Mexican cities–Celaya, Tijuana and Ciudad Juarez–had the highest murder rates in the world, at 109, 105, and 103 murders per 100,000 residents, respectively. So if the movie had been Soylent Verde and set just one country away, it would have been grimly accurate in this regard.

People will have battery banks in their homes. The small apartment that Heston and Sol share has a bank of what look like car batteries for storing electricity. A stationary bicycle connected to the batteries can be pedaled to recharge them. It’s unclear whether the battery bank is their sole source of electricity, or if it’s merely a backup power source in case of grid failures, and it’s also unclear how common the batteries are in other homes.

The battery bank

Batteries are much cheaper and more energy-dense today than they were when Soylent Green was in theaters. However, home battery banks remain uncommon due to the reliability of the electric grid and because the batteries are still too expensive to be worth it.

For example, a typical American home consumes 30 kilowatt hours (kWh) of electricity per day. A person who valued efficiency could reasonably reduce that to 24 kWh / day by buying high-efficiency appliances and by doing things like wearing sweaters instead of turning the heat up so high in the winter. A typical home storage battery such as the “Growatt 6 KW,” costs $4,490 and can only store 6 kWh of electricity, so four of the batteries would be needed to store just one day’s worth of power, for a total cost of $17,960, plus installation costs. The batteries’ storage capacities also degrade with time, meaning they usually need to be replaced after 10-15 years.

The “Growatt 6KW” residential battery

A better option for backup power is a gas-powered generator. While portable generators with wheels are the most familiar versions of the machines, the types generally used for residential backup power are stationary and look like large boxes right outside the houses they provide power to. One high-quality standby generator capable of meeting the 24 kWh / day requirement is the “Generac 72101,” and it costs $5,997 plus more for installation. It is connected to the house’s natural gas plumbing and automatically turns on whenever it detects an electrical grid outage. Best of all, if properly maintained and not overused, such a generator can last 20 years or more before needing replacement.

A Generac 24 kW backup generator installed outside a home

This means a home battery backup system costs three times more than an equivalent backup gas generator. Battery prices will need to drop by 66% to achieve parity. Such an improvement might be possible: Between 2010 and 2019, lithium-ion battery pack prices dropped 87%. However, the rate of yearly cost-improvement declined over that period and continues to do so, suggesting we’ve picked the low-hanging fruits for improving battery cost-performance, so don’t expect another 87% decline over the next 10 years. To get our 66% improvement, which might cause battery banks to become common in houses and apartments, I think 20 years or more of research and industrial efficiencies will be needed.

Assisted suicide will be legal. Discovering the awful truth about Soylent Green pushes Sol–already an old and world-weary man–over the edge, so he signs up for assisted suicide, which is euphemistically called “Going home.” Not only is it legal, it is barely regulated, and Sol merely has to walk into the nearest euthanasia clinic and sign a form to have it done. There’s no wait time, no “cool down period,” and no requirement for suicide requests to be vetted by a court, doctors, mental health specialists, or the applicant’s family.

Sol committing assisted suicide

This depiction of 2022 was partly accurate. Physician-assisted suicide is legal in 10 American states and Washington, DC. While the laws only allow their residents the right of suicide, it is easy for people from other parts of America to satisfy the requirement by moving in and living there for a short period of time.

Additionally, in those 10 states and DC, the applicant must provide medical evidence that he probably has six months or less to live thanks to poor health, and there are processes for adjudicating that evidence. (In effect, legal doctor-assisted suicide is available to anyone in the U.S. who can prove he has six months or less to live.) Professing that one is sick of living–even if the person can prove they are sincere–is insufficient. This means Sol, were he alive in the real world of 2022, would not be able to commit assisted suicide.

The procedure is also not legal in New York, though it is in neighboring New Jersey, and it’s possible the euthanasia clinic in the film was in the latter state. Less than a mile of water separates Manhattan from Jersey City, and Sol could have easily made the journey.

Cannibalism will be widespread. Like “Luke, I am your father,” the line “Soylent Green is people” has long been in our cultural consciousness, and is known even to those who haven’t seen the latter film. With that in mind, I feel no guilt exposing the movie’s climactic reveal: the Soylent company has been secretly turning corpses into crackers that millions (possibly billions) of unsuspecting people have been eating.

Soylent Green crackers been scooped into a bag at a food market

Again, and very fortunately, this prediction was wrong. Cannibalism is not widespread in 2022, or even practiced by anything but a miniscule number of disturbed people. It is probably as culturally taboo as it was in 1973, and even in rare cases where a person voluntarily allows themselves to be killed and eaten by a cannibal, the latter is arrested and charged with a crime.

However, as I’ve predicted, in vitro meat technology should be advanced enough by 2100 to let us grow human flesh and organs in labs, which would provide people a legal way to indulge in “cannibalism” without breaking laws related to murder or desecration of a corpse. As a result, a small number of people will eat human flesh, mostly for novelty, like how people try weird meats like alligator today, but some will eat it routinely because they like the taste or have a cannibal fetish.

Links:

  1. U.S. tree cover was higher in 2021 than it was in 1921.
    https://www.treehugger.com/more-trees-than-there-were-years-ago-its-true-4864115
  2. Globally, tree cover rose by 8% from 1982 to 2016.
    https://www.nature.com/articles/s41586-018-0411-9
  3. New York City had several smog crises during the mid 20th century. https://en.wikipedia.org/wiki/1966_New_York_City_smog
  4. “The Relation of Air Pollution to Mortality” (1976) determined that New York City’s average SO2 concentration from 1970-72 was 155 μg/m3.
    https://www.jstor.org/stable/45002384
  5. Delhi’s 2021 smog emergency
    https://indianexpress.com/article/cities/delhi/delhi-smog-high-levels-of-so2-no2-ozone-7618922/
  6. NOAA webpage featuring data from the weather station in Central Park, which has been operating since 1869. It shows how little average temperatures have risen in NYC since 1972.
    https://www.weather.gov/okx/CentralParkHistorical
  7. In the U.S., the self-storage industry has been growing at a healthy rate.
    https://www.nytimes.com/2021/09/21/business/self-storage-roars-back.html
  8. The top 100 food processing companies of 2020 by revenue
    https://www.foodengineeringmag.com/2021-top-100-food-beverage-companies
  9. The FAO’s “World Food and Agriculture Statistical Pocketbook” for 2018 contains data on sustenance farming.
    https://www.globalagriculture.org/fileadmin/files/weltagrarbericht/Weltagrarbericht/10B%C3%A4uerlicheIndustrielleLW/Pocketbook2018.pdf
  10. South Korea’s dependency ratio was 83.3 in 1970, and India’s was 81.2 in 1965.
    https://www.livemint.com/Opinion/3aGTvnsOvqfu22cfQbS4KN/Making-Indias-demography-its-destiny.html
  11. On any given day, about 1% of New Yorkers are homeless, meaning they spent the night sleeping in public or in a homeless shelter.
    https://www.bowery.org/homelessness/
  12. New York City had 485 murders in 2021.
    https://nypost.com/2022/01/01/nyc-recorded-485-murders-in-2021/
  13. Rankings of most murderous cities, 2020
    https://www.eluniversal.com.mx/nacion/mexico-con-el-top-6-en-el-ranking-de-ciudades-mas-violentas-del-mundo-informe
  14. In 2019, the typical American home used 30 kWh of electricity per day.
    https://blog.constellation.com/2021/02/25/average-home-power-usage/
  15. Residential backup batteries typically wear out after 10 – 15 years.
    https://www.pv-magazine.com/2021/09/23/how-long-do-residential-storage-batteries-last/
  16. Between 2010 and 2019, lithium-ion battery pack prices dropped 87%.
    https://www.dropbox.com/s/l6qr9x1zhvc4yq7/Naam%20Clean%20Energy%20Revolution%20-%20Chinese%20Edition%20-%20Shareable%20-%20Jan%202022.pdf?dl=0
  17. Doctor-assisted suicide is legal in 10 states and Washington, DC.
    https://euthanasia.procon.org/states-with-legal-physician-assisted-suicide/

My future predictions (2022 iteration)

If it’s January, it means it’s time for me to update my big list of future predictions! I used the 2021 version of this document as a template, and made edits to it as needed. For the sake of transparency, I’ve indicated recently added content by bolding it, and have indicated deleted or moved content with strikethrough.

Like any futurist worth his salt, I’m going to put my credibility on the line by publishing a list of my future predictions. I won’t modify or delete this particular blog entry once it is published, and if my thinking about anything on the list changes, I’ll instead create a new, revised blog entry. Furthermore, as the deadlines for my predictions pass, I’ll reexamine them.

I’ve broken down my predictions by the decade. Any prediction listed under a specific decade will happen by the end of that decade, unless I specify some other date (e.g. – “X will happen early in this decade.”).

2020s

  • Better, cheaper solar panels and batteries (for grid power storage and cars) will make clean energy as cheap and as reliable as fossil fuel power for entire regions of the world, including some temperate zones. As cost “tipping points” are reached, it will make financial sense for tens of millions of private homeowners and electricity utility companies to install solar panels on their rooftops and on ground arrays, respectively. This will be the case even after government clean energy subsidies are inevitably retracted. However, a 100% transition to clean energy won’t finish in rich countries until the middle of the century, and poor countries will use dirty energy well into the second half of the century.
  • Fracking and the exploitation of tar sands in the U.S. and Canada will together ensure growth in global oil production until around 2030, at which time the installed base of clean energy and batteries will be big enough to take up the slack. There will be no global energy crisis.
  • This will be a bad decade for Russia as its overall population shrinks, its dependency ratio rises, and as low fossil fuel prices and sanctions keep hurting its economy. Russia will fall farther behind the U.S., China, and other leading countries in terms of economic, military, and technological might.
  • China’s GDP will surpass America’s, India’s population will surpass China’s, and China will never claim the glorious title of being both the richest and most populous country.
  • Improvements to smartphone cameras, mirrorless cameras, and perhaps light-field cameras will make D-SLRs obsolete. 
  • Augmented reality (AR) glasses that are much cheaper and better than the original Google Glass will make their market debuts and will find success in niche applications. Some will grant wearers superhuman visual abilities in the forms of zoom-in and night vision.
  • Virtual reality (VR) gaming will go mainstream as the devices get better and cheaper. It will stop being the sole domain of hardcore gamers willing to spend over $1,000 on hardware.
  • Vastly improved VR goggles with better graphics and no need to be plugged into desktop PCs will hit the market. They won’t display perfectly lifelike footage, but they will be much better than what we have today, and portable. 
  • “Full-immersion” audiovisual VR will be commercially available by the end of the decade. These VR devices will be capable of displaying video that is visually indistinguishable from real reality: They will have display resolutions (at least 60 pixels per degree of field of view), refresh rates, head tracking sensitivities, and wide fields of view (210 degrees wide by 150 degrees high) that together deliver a visual experience that matches or exceeds the limits of human vision. These high-end goggles won’t be truly “portable” devices because their high processing and energy requirements will probably make them bulky, give them only a few hours of battery life (or maybe none at all), or even require them to be plugged into another computer. Moreover, the tactile, olfactory, and physical movement/interaction aspects of the experience will remain underdeveloped.
  • “Deepfake” pornography will reach new levels of sophistication and perversion as it becomes possible to seamlessly graft the heads of real people onto still photos and videos of nude bodies that closely match the physiques of the actual people. New technology for doing this will let amateurs make high-quality deepfakes, meaning any person could be targeted. It will even become possible to wear AR glasses that interpolate nude, virtual bodies over the bodies real people in the wearer’s field of view to provide a sort of fake “X-ray-vision.” The AR glasses could also be used to apply other types of visual filters that degraded real people within the field of view.
  • LED light bulbs will become as cheap as CFL and even incandescent bulbs. It won’t make economic sense NOT to buy LEDs, and they will establish market dominance. [Came true in 2021]
  • “Smart home”/”Wired home” technology will become mature and widespread in developed countries.
  • Video gaming will dispense with physical media, and games will be completely streamed from the internet or digitally downloaded. Business that exist just to sell game discs (Gamestop) will shut down.
  • Instead of a typical home entertainment system having a whole bunch of media discs, different media players and cable boxes, there will be one small, multipurpose box that, among other things, boosts WiFi to ensure the TV and all nearby devices can get signals at multi-Gb/s speeds.
  • Self-driving vehicles will start hitting the roads in large numbers in rich countries. The vehicles won’t drive as efficiently as humans (a lot of hesitation and slowing down for little or no reason), but they’ll be as safe as human drivers. Long-haul trucks that ply simple highway routes will be the first category of vehicles to be fully automated. The transition will be heralded by a big company like Wal-Mart buying 5,000 self-driving tractor trailers to move goods between its distribution centers and stores. Last-mile delivery–involving weaving through side streets, cities and neighborhoods, and physically carrying packages to peoples’ doors–won’t be automated until after this decade. Self-driving, privately owned passenger cars will stay few in number and will be owned by technophiles, rich people, and taxi cab companies.
  • Thanks to improvements in battery energy density and cost, and in fast-charging technology, electric cars will become cost-competitive with gas-powered cars this decade without government subsidies, leading to their rapid adoption. Electric cars are mechanically simpler and more reliable than gas-powered ones, which will hurt the car repair industry. Many gas stations will also go bankrupt or convert to fast charging stations.
  • Quality of life for people living and working in cities and near highways will improve as more drivers switch to quieter, emissionless electric vehicles. The noise reduction will be greatest in cities and suburbs where traffic moves slowly: https://cleantechnica.com/2016/06/05/will-electric-cars-make-traffic-quieter-yes-no/
  • Most new power equipment will be battery-powered, so machines like lawn mowers, leaf blowers, and chainsaws will be much quieter and less polluting than they are today. Batteries will be energy-dense enough to compete with gasoline in these use cases, and differences in overall equipment weight and running time will be insignificant. The notion of a neighbor shattering your sense of peace and quiet with loud yard work will get increasingly alien. 
  • A machine will pass the Turing Test by the end of this decade. The milestone will attract enormous amounts of attention and will lead to several retests, some of which the machine will fail, proving that it lacks the full range of human intelligence. It will lead to debate over the Turing Test’s validity as a measure of true intelligence (Ray Kurzweil actually talked about this phenomenon of “moving the goalposts” whenever we think about how smart computers are), and many AI experts will point out the existence of decades-long skepticism in the Turing Test in their community.
  • The best AIs circa 2029 won’t be able to understand and upgrade their own source codes. They will still be narrow AIs, albeit an order of magnitude better than the ones we have today.
  • Machines will become better than humans at the vast majority of computer, card, and board games. The only exceptions will be very obscure games or recently created games that no one has bothered to program an AI to play yet. But even for those games, there will be AIs with general intelligence and learning abilities that will be “good enough” to play as well as average humans by reading the instruction manuals and teaching themselves through simulated self-play.
  • The cost of getting your genome sequenced and expertly interpreted will drop below $1,000, and enough about the human genome will have been deciphered to make the cost worth the benefit for everyone. By the end of the decade, it will be common for newborns in rich countries to have their genomes sequenced.
  • Better technology will also let pregnant women noninvasively obtain their fetuses’ DNA, at affordable cost.
  • Cheap DNA tests that can measure a person’s innate IQ and core personality traits with high accuracy will become widely available. There is the potential for this to cause social problems. 
  • At-home medical testing kits and diagnostic devices like swallowable camera-pills will become vastly better and more common.
  • Space tourism will become routine thanks to privately owned spacecraft. 
  • Marijuana will be effectively decriminalized in the U.S. Either the federal government will overturn its marijuana prohibitions, or some patchwork of state and federal bans will remain but be so weakened and lightly enforced that there will be no real government barriers to obtaining and using marijuana. 
  • By the end of this decade, photos of almost every living person will be available online (mostly on social media). Apps will exist that can scan through trillions of photos to find your doppelgangers. 
  • In 2029, the youngest Baby Boomer and the oldest Gen Xer will turn 65. 
  • Drones will be used in an attempted or successful assassination of at least one major world leader (Note: Venezuela’s Nicholas Maduro wasn’t high profile enough).

2030s

  • VR and AR goggles will become refined technologies and probably merge into a single type of lightweight device. Like smartphones today, anyone who wants the glasses in 2030 will have them. Even poor people in Africa will be able to buy them. A set of the glasses will last a day on a single charge under normal use.  
  • Augmented reality contact lenses will enter mass production and become widely available, though they won’t be as good as AR glasses and they might need remotely linked, body-worn hardware to provide them with power and data. https://www.inverse.com/article/31034-augmented-reality-contact-lenses
  • The bulky VR goggles of the 2020s will transform into lightweight, portable V.R. glasses thanks to improved technology. The glasses will display lifelike footage. However, the best VR goggles will still need to be plugged into other devices, like routers or PCs.
  • Wall-sized, thin, 8K or even 16K TVs will become common in homes in rich countries, and the TVs will be able to display 3D picture without the use of glasses. A sort of virtual reality chamber could be created at moderate cost by installing those TVs on all the walls of a room to create a single, wraparound screen.
  • It will be common for celebrities of all kinds to make money by “hanging out” with paying customers in virtual reality. For some lower-tier celebrities, this will be their sole source of income. 
  • Functional CRT TVs and computer monitors will only exist in museums and in the hands of antique collectors. This will also be true for DLP TVs. 
  • The video game industry will be bigger than ever and considered high art.
  • It will be standard practice for AIs to be doing hyperrealistic video game renderings, and for NPCs to behave very intelligently thanks to better AI. 
  • Books and computer tablets will merge into a single type of device that could be thought of as a “digital book.” It will be a book with several hundred pages made of thin, flexible digital displays (perhaps using ultra-energy efficient e-ink) instead of paper. At the tap of a button, the text on all of the pages will instantly change to display whichever book the user wanted to read at that moment. They could also be used as notebooks in which the user could hand write or draw things with a stylus, which would be saved as image or text files. The devices will fuse the tactile appeal of old-fashioned books with the content flexibility of tablet computers.
  • Loose-leaf sheets of “digital paper” will also exist thanks to the same technology.
  • Commercially available, head-worn, brain-computer-interface devices (BCIs) linked to augmented reality eyewear will gift humans with crude forms of telepathy and telekinesis. For example, a person wearing the devices could compose a short sentence merely by thinking about it, see the text projected across his augmented field of view, use his thoughts to make any needed edits, and then transmit the sentence to another person or machine, merely by thinking a “Send” command. The human recipient of the message with the same BCI/eyewear setup would see the text projected across his field of view and could compose a response through the same process the first person used. BCIs will also let humans send commands to a machines, like printers. For almost all use cases, this type of communication will be less efficient than traditional alternatives, like manually typing a text message or clicking the “Print” button at the top of a word processing application, but it will be an important proof of concept demonstration that will point to what is to come later in the century.
  • Loneliness, social isolation, and other problems caused by overuse of technology and the atomized structure of modern life will be, ironically, cured to a large extent by technology. Chatbots that can hold friendly (and even funny and amusing) conversations with humans for extended periods, diagnose and treat mental illnesses as well as human therapists, and customize themselves to meet the needs of humans will become ubiquitous. The AIs will become adept at analyzing human personalities and matching lonely people with friends and lovers, at matching them with social gatherings (including some created by machines), and at recommending daily activities that will satisfy them, hour-by-hour. Machines will come to understand that constant technology use is antithetical to human nature, so in order to promote human wellness, they find ways to impel humans to get out of their houses, interact with other humans, and be in nature. Autonomous taxis will also be widespread and will have low fares, making it easier for people who are isolated due to low income or poor health (such as many elderly people) to go out.
  • Chatbots will steadily improve their “humanness” over the decade. The instances when AIs say or do something nonsensical will get less and less frequent. Dumber people, children, and people with some types of mental illness will be the first ones to start insisting their AIs are intelligent like humans. Later, average people will start claiming the same. By the end of the decade, a personal assistant AI like “Samantha” from the movie Her will be commercially available. AI personal assistants will have convincing, simulated personalities that seem to have the same depth as humans. Users will be able to pick from among personality profiles or to build their own.  
  • Chatbots will be able to have intelligent conversations with humans about politics and culture, to identify factually wrong beliefs, biases, and cognitive blind spots in individuals, and to effectively challenge them through verbal discussion and debate. The potential will exist for technology to significantly enlighten the human population and to reduce sociopolitical polarization. However, it’s unclear how many people will choose to use this technology. 
  • Turing-Test-capable chatbots will also supercharge the problem of online harassment, character assassination, and deliberate disinformation by spamming the internet with negative reviews, bullying messages, emails to bosses, and humiliating “deepfake” photos and videos of targeted people. Today’s “troll farms” where humans sit at computer terminals following instructions to write bad reviews for specific people or businesses will be replaced by AI trolls that can pump out orders of magnitude more content per day. And just as people today can “buy likes” for their social media accounts or business webpages, people in the future will be able, at low cost, to buy harassment campaigns against other people and organizations they dislike. Discerning between machine-generated and human-generated internet content will be harder and more important than ever.
  • House robots will start becoming common in rich countries. They will be slower at doing household tasks than humans, but will still save people hours of labor per week. They may or may not be humanoid. For the sake of safety and minimizing annoyance, most robots will do their work when humans aren’t around. As in, you would come home from work every day and find the floors vacuumed, the lawn mowed, and your laundered clothes in your dresser, with nary a robot in sight since it will have gone back into its closet to recharge. You would never hear the commotion of a clothes washing machine, a vacuum cleaner or a lawnmower. All the work would get done when you were away, as if by magic.
  • People will start having genuine personal relationships with AIs and robots. For example, people will resist upgrading to new personal assistant AIs because they will have emotional attachments to their old ones. The destruction of a helper robot or AI might be as emotionally traumatic to some people as the death of a human relative.
  • Farm robots that are better than humans at fine motor tasks like picking strawberries humans will start becoming widespread.  
  • Self-driving cars will become cheap enough and practical enough for average income people to buy, and their driving behavior will become as efficient as an average human. Over the course of this decade, there will be rapid adoption of self-driving cars in rich countries. Freed from driving, people will switch to doing things like watching movies/TV and eating. Car interiors will change accordingly. Road fatalities, and the concomitant demands for traffic police, paramedics, E.R. doctors, car mechanics, and lawyers will sharply decrease. The car insurance industry will shrivel, forcing consolidation. (Humans in those occupations will also face increasing levels of direct job competition from machines over the course of the decade.)
  • Private owners of autonomous cars will start renting them out while not in use as taxis and package delivery vehicles. Your personal, autonomous car will drive you to work, then spend eight hours making money for you doing side jobs, and will be waiting for you outside your building at the end of the day.
  • The “big box” business model will start taking over the transportation and car repair industry thanks to the rise of electric, self-driving vehicles and autonomous taxis in place of personal car ownership. The multitudes of small, scattered car repair shops will be replaced by large, centralized car repair facilities that themselves resemble factory assembly lines. Self-driving vehicles will drive to them to have their problems diagnosed and fixed, sparing their human owners from having to waste their time sitting in waiting rooms.
  • The same kinds of facilities will make inroads into the junk yard industry, as they would have all the right tooling to cheaply and rapidly disassemble old vehicles, test the parts for functionality, and shunt them to disposal or individual resale. (The days of hunting through junkyards by yourself for a car part you need will eventually end–it will all be on eBay. )
  • Car ownership won’t die out because it will still be a status symbol, and having a car ready in your driveway will always be more convenient than having to wait even just two minutes for an Uber cab to arrive at the curb. People are lazy.
  • The ad hoc car rental model exemplified by autonomous Uber cabs and private people renting out their autonomous cars when not in use faces a challenge since daily demand for cars peaks during morning rush hour and afternoon rush hour. In other words, everyone needs a car at the same time each day, so the ratio of cars : people can’t deviate much from, say, 1:2. Of course, if more people telecommuted (almost certain in the future thanks to better VR, faster broadband, and tech-savvy Millennials reaching middle age and taking over the workplace), and if flexible schedules became more widespread (also likely, but within certain limits since most offices can’t function efficiently unless they have “all hands on deck” for at least a few hours each day), the ratio could go even lower. However, there’s still a bottom limit to how few cars a country will need to provide adequate daily transportation for its people.
  • Private delivery services will get cheaper and faster thanks to autonomous vehicles.
  • Automation will start having a major impact on the global economy. Machines will compensate for the shrinkage of the working-age human population in the developed world. Countries with “graying” populations like Japan and Germany will experience a new wave of economic growth. Demand for immigrant laborers will decrease across the world because of machines.
  • There will be a worldwide increase in the structural unemployment rate thanks to better and cheaper narrow AIs and robots. A plausible scenario would be for the U.S. unemployment rate to be 10%–which was last the case at the nadir of the Great Recession–but for every other economic indicator to be strong. The clear message would be that human labor is becoming decoupled from the economy.
  • Combining all the best AI and robotics technologies, it will be possible to create general-purpose androids that could function better in the real world (e.g. – perform in the workplace, learn new things, interact with humans, navigate public spaces, manage personal affairs) than the bottom 10% of humans (e.g. – elderly people, the disabled, criminals, the mentally ill, people with poor language abilities or low IQs), and in some narrow domains, the androids will be superhuman (e.g. – physical strength, memory, math abilities). Note that businesses will still find it better to employ task-specific, non-human-looking robots instead of general purpose androids.
  • By the end of this decade, only poor people, lazy people, and conspiracy theorists (like anti-vaxxers) won’t have their genomes sequenced. It will be trivially cheap, and in fact free for many people (some socialized health care systems will fully subsidize it), and enough will be known about the human genome to make it worthwhile to have the information.
  • Computers will be able to accurately deduce a human’s outward appearance based on only a DNA sample. This will aid police detectives, and will have other interesting uses, such as allowing parents to see what their unborn children will look like as adults, or allowing anyone to see what they’d look like if they were of the opposite sex (one sex chromosome replaced). 
  • Trivially cheap gene sequencing and vastly improved knowledge of the human genome will give rise to a “human genome black market,” in which people secretly obtain DNA samples from others, sequence them, and use the data for their own ends. For example, a politician could be blackmailed by an enemy who threatened to publish a list of his genetic defects or the identities of his illegitimate children. Stalkers (of celebrities and ordinary people) would also be interested in obtaining the genetic information of the people they were obsessed with. It is practically impossible to prevent the release of one’s DNA since every discarded cup, bottle, or utensil has a sample. 
  • Markets will become brutally competitive and efficient thanks to AIs. Companies will sharply grasp consumer demand through real-time surveillance, and consumers will be alerted to bargains by their personal AIs and devices (e.g. – your AR glasses will visually highlight good deals as you walk through the aisles of a store). Your personal assistant AIs and robots will look out for your self-interest by countering the efforts of other AIs to sway your spending habits in ways that benefit companies and not you.
  • “Digital immortality” will become possible for average people. Personal assistant AIs, robot servants, and other monitoring devices will be able, through observation alone, to create highly accurate personality profiles of individual humans, and to anticipate their behavior with high fidelity. Voices, mannerisms and other biometrics will be digitally reproducible without any hint of error. Digital simulacra of individual humans will be further refined by having them take voluntary personality tests, and by uploading their genomes, brain scans and other body scans. Even if all of the genetic and biological data couldn’t be made sense of at the moment it was uploaded to an individual’s digital profile, there will be value in saving it since it might be decipherable in the future. (Note that “digital immortality” is not the same as “mind uploading.”)
  • Life expectancy will have increased by a few years thanks to pills and therapies that slightly extend human lifespan. Like, you take a $20 pill each day starting at age 20 and you end up dying at age 87 instead of age 84.
  • Global oil consumption will peak as people continue switching to other power sources.
  • Earliest possible date for the first manned Mars mission.
  • Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language.
  • Computers will also be able to automatically enhance and upscale old films by accurately colorizing them, removing defects like scratches, and sharpening or focusing footage (one technique will involve interpolating high-res still photos of long-dead actors onto the faces of those same actors in low-res moving footage). Computer enhancement will be so good that we’ll be able to watch films from the early 20th century with near-perfect image and audio clarity.
  • CGI will get so refined than moviegoers with 20/20 vision won’t be able to see the difference between footage of unaltered human actors and footage of 100% CGI actors.
  • Lifelike CGI and “performance capture” will enable “digital resurrections” of dead actors. Computers will be able to scan through every scrap of footage with, say, John Wayne in it, and to produce a perfect CGI simulacrum of him that even speaks with his natural voice, and it will be seamlessly inserted into future movies. Elderly actors might also license movie studios to create and use digital simulacra of their younger selves in new movies. The results will be very fascinating, but might also worsen Hollywood’s problem with making formulaic content.
  • China’s military will get strong enough to defeat U.S. forces in the western Pacific. This means that, in a conventional war for control of the Spratly Islands and/or Taiwan, China would have >50% odds of winning. This shift in the local balance of power does not mean China will start a conflict. 
  • The quality and sophistication of China’s best military technology will surpass Russia’s best technology in all or almost all categories. However, it will still lag the U.S. 

2040s

  • The world and peoples’ outlooks and priorities will be very different than they were in 2019. Cheap renewable energy will have become widespread and totally negated any worries about an “energy crisis” ever happening, except in exotic, hypothetical scenarios about the distant future. There will be little need for immigration thanks to machine labor and cross-border telecommuting (VR, telepresence, and remote-controlled robots will be so advanced that even blue-collar jobs involving manual labor will be outsourced to workers living across borders). Moreover, there will be a strong sense in most Western countries that they’re already “diverse enough,” and that there are no further cultural benefits to letting in more foreigners since large communities of most foreign ethnic groups will already exist within their borders. There will be more need than ever for strong social safety nets and entitlement programs thanks to technological unemployment. AI will be a central political and social issue. It won’t be the borderline sci-fi, fringe issue it was in 2019.
  • Automation, mass unemployment, wealth inequalities between the owners of capital and everyone else, and differential access to expensive human augmentation technologies (like genetic engineering) will produce overwhelming political pressure for some kind of wealth redistribution and social safety net expansion. Countries that have diligently made small, additive reforms as necessary over the preceding decades will be untroubled. However, countries that failed to adapt their political and economic systems will face upheaval.
  • 2045 will pass without the Technological Singularity happening. Ray Kurzweil will either celebrate his 97th birthday in a wheelchair, or as a popsicle frozen at the Alcor Foundation.
  • Supercomputers that match or surpass upper-level estimates of the human brain’s computational capabilities will cost a few hundred thousand to a few million dollars apiece, meaning tech companies and universities will be able to afford large numbers of them for AI R&D projects, accelerating progress in the field. Hardware will no longer be the limiting factor to building AGI. If it hasn’t been built yet, it will be due to failure to figure out how to arrange the hardware in the right way to support intelligent thought, and/or to a failure to develop the necessary software. 
  • With robots running the economy, it will be common for businesses to operate 24/7: restaurants will never close, online orders made at 3:00 am will be packed in boxes by 3:10 am, and autonomous delivery trucks will only stop to refuel, exchange cargo, or get preventative maintenance.
  • Advanced energy technology, robot servants, 3D printers, telepresence, and other technologies will allow people to live largely “off-grid” if they choose, while still enjoying a level of comfort that 2019 people would envy.
  • Recycling will become much more efficient and practical thanks to house robots properly cleaning, sorting, and crushing/compacting waste before disposing of it. Automated sorting machines at recycling centers will also be much better than they are today. Today, recycling programs are hobbled because even well-meaning humans struggle to remember which of their trash items are recyclable and which aren’t since the acceptable items vary from one municipality to the next, and as a result, recycling centers get large amounts of unusable material, which they must filter out at great cost. House robots would remember it perfectly.
  • Thanks to this diligence, house robots will also increase backyard composting, easing the burden on municipal trash services. 
  • It will be common for cities, towns and states to heavily restrict or ban human-driven vehicles within their boundaries. A sea change in thinking will happen as autonomous cars become accepted as “the norm,” and human-driven cars start being thought of as unusual and dangerous.
  • Over 90% of new car sales in developed countries will be for electric vehicles. Just as the invention of the automobile transformed horses into status goods used for leisure, the rise of electric vehicles will transform internal combustion vehicles into a niche market for richer people. 
  • A global “family tree” showing how all humans are related will be built using written genealogical records and genomic data from the billions of people who have had their DNA sequenced. It will become impossible to hide illegitimate children, and it will also become possible for people to find “genetic doppelgangers”–other people they have no familial relationship to, but with whom, by some coincidence, they share a very large number of genes. 
  • Improved knowledge of human genetics and its relevance to personality traits and interests will strengthen AI’s ability to match humans with friends, lovers, and careers. Rising technological unemployment will create a need for machines to match human workers with the remaining jobs in as efficient a manner as possible.
  • People with distinctive personalities (particularly vibrant, funny, or sexy) will routinely sell “digital copies” of themselves for other people to download and use as AI personal assistants. This will be analogous to today’s ability to select different voices for personal GPS devices. Additionally, users will be able to tweak “base versions” of downloaded personalities to suit their unique preferences. 
  • The digital personalities of fictitious people, like movie and cartoon characters, and of long-dead people, will also be downloadable. 
  • Realistic robot sex bots that can move and talk will exist. They won’t perfectly mimic humans, but will be “good enough” for most users. Using them will be considered weird and “for losers” at first, but in coming decades it will go mainstream, following the same pattern as Internet dating. [If we think of sex as a type of task, and if we agree that machines will someday be able to do all tasks better than humans, then it follows that robots will be better than humans at sex.]  
  • Augmented reality contact lenses will give people superhuman vision.

2050s

  • This is the earliest possible time that AGI/SAI will be invented. It will not be able to instantly change everything in the world or to initiate a Singularity, but it will rapidly grow in intelligence, wealth, and power. It will probably be preceded by successful computer simulations of the brains of progressively more complex model organisms, such as flatworms, fruit flies, and lab rats.
  • Humans will be heavily dependent upon their machines for almost everything (e.g. – friendship, planning the day, random questions to be answered, career advice, legal counseling, medical checkups, driving cars), and the dependency will be so ingrained that humans will reflexively assume that “The Machines are always right.” Consciously and unconsciously, people will yield more and more of their decision-making and opinion-forming to machines, and find that they and the world writ large are better off for it. This will be akin to having an angel on your shoulder watching your surroundings and watching you, and giving you constructive advice all the time. 
  • In the developed world, less than 50% of people between age 22 and 65 will have gainful full-time jobs. However, if unprofitable full-time jobs that only persist thanks to government subsidies (such as someone running a small coffee shop and paying the bills with their monthly UBI check) and full-time volunteer “jobs” (such as picking up trash in the neighborhood) are counted, most people in that age cohort will be “doing stuff” on a full-time basis.  
  • The doomsaying about Global Warming will start to quiet down as the world’s transition to clean energy hits full stride and predictions about catastrophes from people like Al Gore fail to pan out by their deadlines. Sadly, people will just switch to worrying about and arguing about some new set of doomsday prophecies about something else.
  • By almost all measures, standards of living will be better in 2050 than today. People will commonly have all types of wonderful consumer devices and appliances that we can’t even fathom. However, some narrow aspects of daily life are likely to worsen, such as overcrowding and further erosion of the human character. Just as people today have short memories and take too many things for granted, so shall people in the 2050s fail to appreciate how much the standard of living has risen since today, and they will ignore all the steady triumphs humanity has made over its problems, and by default, people will still believe the world is constantly on the verge of collapsing and that things are always getting worse.
  • Cheap desalination will provide humanity with unlimited amounts of drinking water and end the prospect of “water wars.” 
  • Mass surveillance and ubiquitous technology will have minimized violent crime and property crime in developed countries: It will be almost impossible to commit such crimes without a surveillance camera or some other type of sensor detecting the act, or without some device recording the criminal’s presence in the area at the time of the act. House robots will contribute by effectively standing guard over your property at night while you sleep. 
  • It will be common for people to have health monitoring devices on and inside of their bodies that continuously track things like their heart rate, blood pressure, respiration rate, and gene expression. If a person has a health emergency or appears likely to have one, his or her devices will send out a distress signal alerting EMS and nearby random citizens. If you walked up to such a person while wearing AR glasses, you would see their vital statistics and would receive instructions on how to assist them (i.e. – How to do CPR). Robots will also be able to render medical aid. 
  • Cities and their suburbs across the world will have experienced massive growth since 2019. Telepresence, relatively easy off-grid living, and technological unemployment will not, on balance, have driven more people out of metro areas than have migrated into them. Farming areas full of flat, boring land will have been depopulated, and many farms will be 100% automated. The people who choose to leave the metro areas for the “wilderness” will concentrate in rural areas (including national parks) where the climate is good, the natural scenery is nice, and there are opportunities for outdoor recreation. Real estate prices will, in inflation-adjusted terms, be much higher in most metro areas and places with natural beauty than they were in 2020 because the “supply” of those prime locations is almost fixed, whereas the demand for them is elastic and will rise thanks to population growth, rising incomes, and the aforementioned technology advancements.
  • Therapeutic cloning and stem cell therapies will become useful and will effectively extend human lifespan. For example, a 70-year-old with a failing heart will be able to have a new one grown in a lab using his own DNA, and then implanted into his chest to replace the failing original organ. The new heart will be equivalent to what he had when at age 18 years, so it will last another 52 years before it too fails. In a sense, this will represent age reversal to one part of his body. In a sense, this will represent age reversal to one part of his body.
  • As a result of the above technologies, it will be much rarer for people in rich countries to die waiting for organ transplants than it is now, in 2022.
  • The first healthy clone of an adult human will be born.
  • Many factories, farms, and supply chains will be 100% automated, and it will be common for goods to not be touched by a human being’s hands until they reach their buyers. Robots will deliver Amazon packages to your doorstep and even carry them into your house. Items ordered off the internet will appear inside your house a few hours later, as if by magic. 
  • Smaller versions of the robots used on automated farms will be available at low cost to average people, letting them effortlessly create backyard gardens. This will boost global food production and let people have greater control over where their food comes from and what it contains. 
  • The last of America’s Cold War-era weapon platforms (e.g. – the B-52 bomber, F-15 fighter, M1 Abrams tank, Nimitz aircraft carrier) will finally be retired from service. There will be instances where four generations of people from the same military family served on the same type of plane or ship. 
  • Cheap guided bullets, which can make midair course changes and be fired out of conventional man-portable rifles, will become common in advanced armies. 
  • Personal “cloaking devices” made of clothes studded with pinhole cameras and thin, flexible sheets of LEDs, colored e-ink, or some metamaterial with similar abilities will be commercially available. The cameras will monitor the appearance of the person’s surroundings and tell the display pixels to change their colors to match.
  • The “cloaking” outfits will also have benign applications related to fashion and everyday utility. People wearing them could use them to display morphing patterns and colors of their choice. It would even be possible to become a “walking TV.” The pixels could also be made to glow bright white, allowing the wearer to turn any part of his body into a flashlight. Ski masks made of the same material would let wearers change their facial features, fooling most face recognition cameras and certainly fooling the unaided eyes of humans, at least at a distance.
  • Powered exoskeletons will become practical for a wide range of applications, mainly due to improvements in batteries. For example, a disabled person could use a lightweight exoskeleton with a battery the size of a purse to walk around for a whole day on a single charge, and a soldier in a heavy-duty exoskeleton with a large backpack battery could do a day of marching on a single charge. (Note: Even though it will be technologically possible to equip infantrymen with combat exoskeletons, armies might reject the idea due to other impracticalities.)
  • There will be no technological or financial barrier to building powered combat exoskeletons that have cloaking devices. 
  • The richest person alive will achieve a $1 trillion net worth.
  • It will be technologically and financially feasible for small aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by carbon-neutral synthetic fossil fuels that cost no more than normal fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells.
  • Cheap guided bullets, capable of midair course changes to hit targets and of being fired out of conventional rifles, will become common in advanced armies. Practical, affordable rifles capable of limited self-aiming will also exist (similar to the “Smartgun” from the movie Aliens). Thanks to these technologies, an ordinary rifleman of the 2050s will be like the snipers of today.

2060s

  • Machines will be better at satisfyingly matching humans with fields of study, jobs, friends, romantic partners, hobbies, and daily activities than most humans can do for themselves. Machines themselves will make better friends, confidants, advisers, and even lovers than humans. Additionally, machines will be smarter and more skilled at humans in most areas of knowledge and types of work. A cultural sea change will happen, in which most humans come to trust, rely upon, defend, and love machines.
  • House robots and human-sized worker robots will be as strong, agile, and dexterous as most humans, and their batteries will be energy-dense enough to power them for most of the day. A typical American family might have multiple robot servants that physically follow around the humans each day to help with tasks. The family members will also be continuously monitored and “followed” by A.I.s embedded in their portable personal computing devices and possibly in their bodies. 
  • Cheap home delivery of groceries, robot chefs, and a vast trove of free online recipes will enable people in average households to eat restaurant-quality meals at home every day, at low cost. Predictive algorithms that can appropriately choose new meals for humans based on their known taste preferences and other factors will determine the menu, and many people will face a culinary “satisfaction paradox.”
  • Average people will have access to high-quality meals that only rich people can have today at fancy restaurants.
  • Machines will understand humans individually and at the species level better than humans understand themselves. They will have highly accurate personality models of most humans along with a comprehensive grasp of human sociology, human decision-making, human psychology, human cognitive biases, and human nature, and will pool the information to accurately predict human behavior. A nascent version of a 1:1 computer simulation of the Earth–with the human population modeled in great detail–will be created.
  • Machines will be better teachers than most trained humans. The former will have much sharper grasps of their pupils’ individual strengths, weaknesses, interests, and learning styles, and will be able to create and grade tests in a much fairer and less biased manner than humans. Every person will have his own tutor. 
  • There will be a small, permanent human presence on the Moon.
  • If a manned Mars mission hasn’t happened yet, then there will be intense pressure to do so by the centennial of the first Moon landing (1969).
  • The worldwide number of supercentenarians–people who are at least 110 years old–will be sharply higher than it was in 2019: Their population size could be 10 times bigger or more. 
  • Advances in a variety of technologies will make it possible to cryonically freeze humans in a manner that doesn’t pulverize their tissue. However, the technology needed to safely thaw them out won’t be invented for decades. 
  • China will effectively close the technological, military, and standard of living gaps with other developed countries. Aside from the unpleasantness of being a more crowded place, life in China won’t be worse overall than life in Japan or the average European country. Importantly, China’s pollution levels will be much lower than they are today thanks to a variety of factors.
  • Small drones (mostly aerial) will have revolutionized warfare, terrorism, assassinations, and crime and will be mature technologies. An average person will be able to get a drone of some kind that can follow his orders to find and kill other people or to destroy things.
  • Countermeasures against those small drones will also have evolved, and might include defensive drones and mass surveillance networks to detect drone attacks early on. The networks would warn people via their body-worn devices of incoming drone attacks or of sightings of potentially hostile drones. The body-worn devices, such as smartphones and AR glasses, might even have their own abilities to automatically detect drones by sight and sound and to alert their wearers.

2070s

  • 100 years after the U.S. “declared war” on cancer, there still will not be a “cure” for most types of cancer, but vaccination, early detection, treatment, and management of cancer will be vastly better, and in countries with modern healthcare systems, most cancer diagnoses will not reduce a person’s life expectancy. Consider that diabetes and AIDS were once considered “death sentences” that would invariably kill people within a few years of diagnosis, until medicines were developed that transformed them into treatable, chronic health conditions. 
  • Hospital-acquired infections will be far less of a problem than they are in 2020 thanks to better sterilization practices, mostly made possible by robots.
  • It will be technologically and financially feasible for large commercial aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by synthetic fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells. 
  • Digital or robotic companions that seem (or actually are) intelligent, funny, and loving will be easier for humans to associate with than other humans.
  • Technology will enable the creation of absolute surveillance states, where all human behavior is either constantly monitored or is inferred with high accuracy based on available information. Even a person’s innermost thoughts will be knowable thanks to technologies that monitor him or her for the slightest things like microexpressions, twitches, changes in voice tone, and eye gazes. When combined with other data regarding how the person spends their time and money, it will be possible to read their minds. The Thought Police will be a reality in some countries.  
  • Thanks to advanced lab synthesis of foods, new spices, hybrid fruits and vegetables, and meats with entirely new taste profiles will be brought into existence. Swaths of the “landscape of all possible flavors” that are currently unexplored will be.
  • Many heavily automated farms (including indoor farms and gardens on suburban plots of land) will produce food that is noticeably tastier and measurably more nutritious that most of today’s food because the advanced farms won’t need to use pesticides or to favor crop varieties that are hardy enough to endure transport over long supply chains. At low cost and for little effort, communities and individuals with small amounts of land will be able to meet their own food needs locally. People who value “natural” lifestyles might, ironically, find it most beneficial to rely on robots to make their food for them.

2100

  • Humans probably won’t be the dominant intelligent life forms on Earth.
  • Latest possible time that AGI/SAI will be invented. By this point, computer hardware will so powerful that we could do 1:1 digital simulations of human brains. If our AI still falls far short of human-like general intelligence and creativity, then it might be that only organic substrates have the necessary properties to support them.
  • The worst case scenario is that AGI/Strong AI will have not been invented yet, but thousands of different types of highly efficient, task-specific Narrow AIs will have (often coupled to robot bodies), and they will fill almost every labor niche better than human workers ever could (“Death by a Thousand Cuts” job automation scenario). Humans grow up in a world where no one has to work, and the notion of drudge work, suffering through a daily commute, and involuntarily waking up at 6:00 am five days a week is unfathomable. Every human will have machines that constantly monitor them or follow them around, and meet practically all their needs.
  • Telepresence technology will also be very advanced, allowing humans to do nearly any task remotely, from any other place in the world, in safety and comfort. This will include cognitive tasks and hands-on tasks. If any humans still have jobs, they’ll be able to work from anywhere.
  • Sophisticated narrow AI will be integrated into the telepresence technology, providing human workers with real-time assistance with tasks. An illustrative scenario would have a human in Nigeria using a VR rig to remotely control a robot that is fixing an air conditioner in England. Software programs monitoring the live video feed would recognize all of the objects in the robot’s field of view and would also understand what the human worker was trying to accomplish, and the programs would help him by visually highlighting tools or air conditioner components, or by giving him verbal advice on what to do. 
  • The use of robotic surrogate bodies for remote work will also erase any employment gaps caused by physical strength and endurance differences between the sexes and between the elderly and the young. Small men, old people, and women of average stature will be just as good at performing hard manual labor as big men. The easing of physical strain associated with work will also allow people to work past today’s retirement age. However, most serious physical work will be best left to autonomous machines.
  • The world could in many ways resemble Ray Kurzweil’s predicted Post-Singularity world. However, the improvements and changes will have accrued thanks to decades of AGI/Strong AI steady effort. Everything will not instantly change on DD/MM/2045 as Kurzweil suggests it will.
  • Hundreds of millions, and possibly billions, of “digitally immortal avatars” of dead humans will exist, and you will be able to interact with them through a variety of means (in FIVR, through devices like earpieces and TV screens, in the real world if the avatar takes over an android body resembling the human it was based on). 
  • A weak sort of immortality will be available thanks to self-cloning, immortal digital avatars, and perhaps mind uploading. You could clone yourself and instruct your digital avatar–which would be a machine programmed with your personality and memories–to raise the clone and ensure it developed to resemble you. Your digital avatar might have an android body or could exist in a disembodied state. 
  • It will be possible to make clones of humans using only their digital format genomic data. In other words, if you had a .txt file containing a person’s full genetic code, you could use that by itself to make a living, breathing clone. Having samples of their cells would not be necessary. 
  • The “DNA black market” that arose in the 2030s will pose an even bigger threat since it will be now possible to use DNA samples alone or their corresponding .txt files to clone a person or to produce a sperm or egg cell and, in turn, a child. Potential abuses include random people cloning or having the children of celebrities they are obsessed with, or cloning billionaires in the hopes of milking the clones for money. Important people who might be targets of such thefts will go to pains to prevent their DNA from being known. Since dead people have no rights, third parties might be able to get away with cloning or making gametes of the deceased.
  • Life expectancy escape velocity and perhaps medical immortality will be achieved. It will come not from magical, all-purpose nanomachines that fix all your body’s cells and DNA, but from a combination of technologies, including therapeutic cloning of human organs, cybernetic replacements for organs and limbs, and stem cell therapies that regenerate ageing tissues and organs inside the patient’s body. The treatments will be affordable in large part thanks to robot doctors and surgeons who work almost for free, and to medical patents expiring.
  • All other aspects of medicine and healthcare will have radically advanced. There will be vaccines and cures for almost all contagious diseases. We will be masters of human genetic engineering and know exactly how to produce people that today represent the top 1% of the human race (holistically combining IQ, genetic health, physical attractiveness, and likable/prosocial personality traits). However, the value of even a genius-IQ human will be questionable since intelligent machines will be so much smarter.
  • Augmentative cybernetics (including direct brain-to-computer links) will exist and be in common use.
  • While the traditional, “pure” races of humans will all still exist, notions of “race” and racial identity will be scrambled by the large numbers of mixed-race people who will be alive, and by widespread genetic engineering that will give people combinations of physical traits that were almost unachievable through normal human breeding. Examples might include black people with naturally blue eyes, or East Asians with naturally blonde hair. (Voluntary genetic engineering will also ensure that redheads don’t ever die out.) Some people will even have totally new genes, either synthesized in labs or borrowed from animals, that give them physical traits not found in any preexisting human race, like red eyes or purple hair.
  • Full-immersion virtual reality (FIVR) will exist wherein AI game masters constantly tailor environments, NPCs and events to suit each player’s needs and to keep them entertained. Every human will have his own virtual game universe where he’s #1. With no jobs in the real world to occupy them, it’s quite possible that a large fraction of the human race will willingly choose to live in FIVR. (Related to the satisfaction paradox) Elements of these virtual environments could be pornographic and sexual, allowing people to gratify any type of sexual fetish or urge with computer-generated scenarios and partners. 
  • More generally, AIs and humans whose creativity is turbocharged by machines will create enjoyable, consumable content (e.g. – films, TV shows, songs, artwork, jokes, new types of meals) faster than non-augmented humans can consume it. As a simple example of what this will be like, assume you have 15 hours of free time per day, that you love spending it listening to music, and each day, your favorite bands produce 16 hours worth of new songs that you really like.
  • The vast majority of unaugmented human beings will no longer be assets that can invent things and do useful work: they will be liabilities that do (almost) everything worse than intelligent machines and augmented humans. Ergo, the size of a nation’s human population will subtract from its economic and military power, and radical shifts in geopolitics are possible. Geographically large but sparsely populated countries like Russia, Australia and Canada might become very strong.
  • The transition to green energy sources will be complete, and humans will no longer be net emitters of greenhouse gases. The means will exist to start reducing global temperatures to restore the Earth to its pre-industrial state, but people will resist because they will have gotten used to the warmer climate. People living in Canada and Russia won’t want their countries to get cold again.
  • Synthetic meat will taste no different from animal meat, and will be at least as cheap to make. The raising and/or killing of animals for food will be be illegal in many countries, and trends will clearly show the practice heading for worldwide ban. 
  • Meats that are expensive and/or rare today, like Kobe beef steaks, snakes, bats, or even human flesh, will be cheap and widely available thanks to meat synthesis technology. 
  • Cheap, synthetic chicken eggs will also exist and will taste no different from natural eggs. 
  • The means to radical alter human bodies, alter memories, and alter brain structures will be available. The fundamental bases of human existence and human social dynamics will change unpredictably once differences in appearance/attractiveness, intelligence, and personality traits can be eliminated at will. Individuals won’t be defined by fixed attributes anymore. 
  • Brain implants will make “telepathy” possible between humans, machines and animals. Computers, sensors and displays will be embedded everywhere in the built environment and in nature, allowing humans with brain implants to interface with and control things around them through thought alone. 
  • Brain implants and brain surgeries will also be used to enhance IQ, change personality traits, and strengthen many types of skills. 
  • Using brain-computer interfaces, people will be able to make sophisticated songs and pieces of artwork with their thoughts alone. 
  • Technologically augmented humans and androids will have many abilities and qualities that ancient people considered “Godlike,” such as medical immortality, the ability to control objects by thought, telepathy, perfect memories, and superhuman senses.
  • Flying cars designed to carry humans could be common, but they will be flown by machines, not humans. Ground vehicles will retain many important advantages (fuel efficiency, cargo capacity, safety, noise level, and more) and won’t become obsolete. Instead of flying cars, it’s more likely that there will be millions of small, autonomous helicopters and VTOL aircraft that will cheaply ferry people through dense, national networks of helipads and airstrips. Autonomous land vehicles would take take passengers to and from the landing sites. (https://www.militantfuturist.com/why-flying-cars-never-took-off-and-probably-never-will/
  • The notion of vehicles (e.g. – cars, planes, and boats) polluting the air will be an alien concept. 
  • Advanced nanomachines could exist.
  • Vastly improved materials and routine use of very advanced computer design simulations (including simulations done in quantum computers) will mean that manufactured objects of all types will be optimally engineered in every respect, and might seem to have “magical” properties. For example, a car will be made of hundreds of different types of alloys, plastics, and glass, each optimized for a different part of the vehicle, and car recalls will never happen since the vehicles will undergo vast amounts of simulated testing in every conceivable driving condition in 1:1 virtual simulations of the real world. 
  • Design optimization and the rise of AGI consumption will virtually eliminate planned obsolescence. Products that were deliberately engineered to fail after needlessly short periods, and “new” product lines that were no better than what they replaced, but had non-interchangeable part sizes would be exposed for what they were, and AGI consumers would refuse to buy them. Production will become much more efficient and far fewer things will be thrown out. 
  • Relatively cheap interplanetary travel (probably just to Mars and to space stations and moons that are about as far as Mars) will exist.
  • Androids that are outwardly indistinguishable from humans will exist, and humans will hold no advantages over them (e.g. – physical dexterity, fine motor control, appropriateness of facial expressions, capacity for creative thought). Some androids will also be indistinguishable to the touch, meaning they will seem to be made of supple flesh and will be the same temperature as human bodies. However, their body parts will not be organic.
  • Sex robots will be indistinguishable from humans.
  • Android assassins like the T-800s from the Terminator films will exist. They will look identical to humans, will be able to blend into human populations, track down targets, and kill or abduct them. As in the films, these androids will be stronger, more durable, and more skilled with weapons than we are.
  • Robots that are outwardly identical to sci-fi and fantasy characters and extinct animals, like grey aliens, elves, fairies, giant house cats, and dinosaurs, will exist and will occasionally be seen in public. Some weird person will want their robot butler to look like bigfoot, and at least one hobbyist will build a life-sized robotic dragon that can fly and spit fire.
    https://www.mentalfloss.com/article/503967/could-game-throness-dragons-really-fly-we-asked-some-experts 
  • Humans interested in extreme body modifications will be able to surgically alter themselves to look like many of those creatures.
  • Machines that are outwardly indistinguishable from animals will also exist, and they will have surveillance and military applications. 
  • Drones, miniaturized smart weapons, and AIs will dominate warfare, from the top level of national strategy down to the simplest act of combat. The world’s strongest military could, with conventional weapons alone, destroy most of the world’s human population in a short period of time. 
  • The construction and daily operation of prisons will have been fully automated, lowering the monetary costs of incarceration. As such, state prosecutors and judges will no longer feel pressure to let accused criminals have plea deals or to give them shorter prison sentences to ease the burdens of prison overcrowding and high overhead costs. 
  • The term “millionaire” will fall out of use in the U.S. and other Western countries since inflation will have rendered $1 million USD only as valuable as $90,000 USD was in 2019 (assuming a constant inflation rate of 3.0%).
  • There will still be major wealth and income inequality across the human race. However, wealth redistribution, better government services, advances in industrial productivity, and better technologies will ensure that even people in the bottom 1% have all their basic and intermediate life needs meet. In many ways, the poor people of 2100 will have better lives than the rich people of 2020.

2101 – 2200 AD

  • Humans will definitely stop being the dominant intelligent life forms on Earth. 
  • Many “humans” will be heavily augmented through genetic engineering, other forms of bioengineering, and cybernetics. People who outwardly look like the normal humans of today might actually have extensive internal modifications that give them superhuman abilities. Non-augmented, entirely “natural” humans like people in 2019 will be looked down upon in the same way you might today look at a very low IQ person with sensory impairments. Being forced by your biology to incapacitate yourself for 1/3 of each day to sleep will be tantamount to having a medical disability. 
  • Due to a reduced or nonexistent need for sleep among intelligent machines and augmented humans and to the increased interconnectedness of the planet, global time zones will become much less relevant. It will be common for machines, humans, businesses, and groups to use the same clock–probably Coordinated Universal Time (UTC)–and for activity to proceed on a 24/7 basis, with little regard of Earth’s day/night cycle. 
  • Physical disabilities and defects of appearance that cause untold anguish to people in 2019 will be easily and cheaply fixable. For example, male-pattern baldness and obesity will be completely ameliorated with minor medical interventions like pills or outpatient surgery. Missing or deformed limbs will be easily replaced, all types of plastic surgery (including sex reassignment) will be vastly better and cheaper than today, and spinal cord damage will be totally repairable. The global “obesity epidemic” will disappear. Transsexual people will be able to seamlessly alter their bodies to conform with their preferred genders, or to alter their brains so their gender identities conform with the bodies they were born with. 
  • All sleep disorders will be curable thanks to cybernetics that can use electrical pulses to quickly initiate sleep states in human brains. The same kinds of technologies will also reduce or eliminate the need for humans to sleep, and for people to control their dreams. 
  • Brain-computer interfaces will let people control, pre-program, and, to a limited extent, record their dreams. 
  • Through electrical signaling and chemical releases, the brain implants will be able to induce any type of mental or emotional state. This will include altered states of consciousness, like lucid dreaming, meditation, or intoxication. A person might have to go through a “calibration period” where the implants would monitor and record their brain activity while they experienced different things, and then, the user would experiment with the implant to see how well it could induce the recorded brain states. Through a process of guided trial and error, they would become masters of their own minds. This ability would make human life richer and more productive, as people could have valuable experiences during portions of the day when they would otherwise be bored or “switched off,” and to even do useful problem-solving tasks in their sleep.
  • Direct brain-to-computer interfaces and other advanced technologies will let humans enter virtual reality worlds that seem no different from the real world (the “Matrix scenario”), and to remotely control robot bodies located anywhere in the real world, with fully lifelike levels of sensory richness and fusion. Able to control perfect robot bodies of any design in the real world, and to take on any form in virtual worlds, some humans will have no use for real, fixed-form bodies, and will dispense with them, instead existing as “brains in jars.”  
  • Some “humans” will lack fixed, corporeal forms; they will be able to extensively modify their original bodies or to switch bodies at will. A person could take the form of something nonhuman, like a terrestrial squid.
  • Almost all of today’s diseases will be cured.
  • The means to halt and reverse human aging will be created. The human population will come to be dominated by people who are eternally young and beautiful. 
  • Humans and machines will be immortal. Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who lived their lives knowing they were doomed to deteriorate and die. 
  • Extreme longevity, better reproductive technologies that eliminate the need for a human partner to have children, and robots that do domestic work and provide companionship (including sex) will weaken the institution of marriage more than any time in human history. An indefinite lifetime of monogamy will be impossible for most people to commit to. 
  • At reasonable cost, it will be possible for women to create healthy, genetically related children at any point in their lives, and without using the 2019-era, pre-menopausal egg freezing technique. For example, a 90-year-old, menopausal woman will be able to use reproductive technologies to make a baby that shares 50% of her DNA. 
  • Opposite-sex human clones will exist. Such a clone would share 22-1/2 of their 23 chromosome pairs with their “original.” Only the final sex chromosome, which would be either a “Y” or a second “X”, would differ.  
  • Immortality, the automation of work, and widespread material abundance will completely transform lifestyles. With eternity to look forward to, people won’t feel pressured to get as rich as possible as quickly as possible. As stated, marriage will no longer be viewed as a lifetime commitment, and serial monogamy will probably become the norm. Relationships between parents and offspring will change as longevity erases the disparities in generational outlook and maturity that traditionally characterize parent-child interpersonal dynamics (e.g. – 300-year-old dad doesn’t know any better than his 270-year-old son). The “factory model” of public education–defined by conformity, rote memorization, frequent intelligence testing, and curricula structured to serve the needs of the job market–will disappear. The process of education will be custom-tailored to each person in terms of content, pacing, and style of instruction. Students will be much freer to explore subjects that interest them and to pursue those that best match their talents and interests. 
  • Radically extended human lifespans mean it will become much more common to have great-grandparents around. A cure for aging will also lead to families where members separated in age by many decades look the same age and have the same health. Additionally, older family members won’t be burdensome since they will be healthy.
  • The human population might start growing again thanks to medical immortality, to advanced fertility technologies including artificial wombs and cloning, and to robots that help raise children, reducing the workload for human parents. The human race won’t die out thanks to persistently low birthrates.
  • Thanks to radical genetic engineering, there will be “human-looking,” biological people among us that don’t belong to our species, Homo sapiens. Examples could include engineered people who have 48 chromosomes instead of 46, people whose genomes have been shortened thanks to the deletion of junk DNA, or people who look outwardly human but who have radically different genes within their 46 chromosomes, so they have different numbers or arrangements of internal organs (like two hearts), or even new types of internal organs, such as bird-like lung . Such people wouldn’t be able to naturally breed with Homo sapiens, and would belong to new hominid species. 
  • Extinct species for which we have DNA samples (ex – from passenger pigeons on display in a museum) will “resurrected” using genetic technology.
  • The global mass surveillance network will encompass unpopulated areas and wilderness areas, protecting animals from poaching. Extinctions of large, wild animals will stop.
  • The technology for safely thawing humans out of cryostasis and returning them to good health will be created. 
  • Suspended animation will become a viable alternative to suicide. Miserable people could “put themselves under,” with instructions to not be revived until the ill circumstances that tormented them had disappeared or until cures for their mental and medical problems were found. 
  • A sort of “time travel” will become possible thanks to technology. Suspended animation will let people turn off their consciousnesses until any arbitrary date in the future. From their perspective, no time will have elapsed between being frozen and being thawed out, even if hundreds of years actually passed between those two events, meaning the suspended animation machine will subjectively be no different from a time machine to them. FIVR paired with data from the global surveillance networks will let people enter highly accurate computer simulations of the past. The data will come from sources like old maps, photos, videos, and the digital avatars of people, living and dead. The computers simulations of past eras will get less accurate as the dates get more distant and the data scarcer.
  • It will be possible to upload human minds to computers. The uploads will not share the same consciousness as their human progenitors, and will be thought of as “copies.” Mind uploads will be much more sophisticated than the digitally immortal avatars that will come into existence in the 2030s.
  • Different types of AGIs with fundamentally different mental architectures will exist. For example, some AGIs will be computer simulations of real human brains, while others will have totally alien inner workings. Just as a jetpack and a helicopter enable flight through totally different approaches, so will different types of AGIs be capable of intelligent thought. 
  • Gold, silver, and many other “precious metals” will be worth far less than today, adjusting for inflation, because better ways of extracting (including from seawater) them will have been developed. Space mining might also massively boost supplies of the metals, depressing prices. Diamonds will be nearly worthless thanks to better techniques for making them artificially. 
  • The first non-token quantities of minerals derived from asteroid mining will be delivered to the Earth’s surface. (Finding an asteroid that contains valuable minerals, altering its orbit to bring it closer to Earth, and then waiting for it to get here will take decades. No one will become a trillionaire from asteroid mining until well into the 22nd century.)
  • Synthetic life forms will colonize parts of the world uninhabitable to humans, like mountaintops, oceans (both on the surface and under it), and maybe even underground regions. Intelligent and semi-intelligent machines will be common sights, even in remote areas.
  • Intelligent life from Earth will colonize the entire Solar System, all dangerous space objects in our System will be found, the means to deflect or destroy them will be created, and intelligent machines will redesign themselves to be immune to the effects of radiation, solar flares, gamma rays, and EMP. As such, natural phenomena (including global warming) will no longer threaten the existence of civilization.  Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who were confined to Earth and at the mercy of planet-killing disasters. 
  • “End of the World” prophecies will become far less relevant since civilization will have spread beyond Earth and could be indefinitely self-sustaining even if Earth were destroyed. Some conspiracy theorists and religious people would deal with this by moving on to belief in “End of the Solar System” prophecies, but these will be based on extremely tenuous reasoning. 
  • The locus of civilization and power in our Solar System will shift away from Earth. The vast majority of intelligent life forms outside of Earth will be nonhuman. 
  • A self-sustaining, off-world industrial base will be created.
  • Spy satellites with lenses big enough to read license plates and discern facial features will be in Earth orbit. 
  • Space probes made in our Solar System and traveling at sub-light speeds will reach nearby stars.
  • All of the useful knowledge and great works of art that our civilization has produced or discovered could fit into an advanced memory storage device the size of a thumb drive. It will be possible to pair this with something like a self-replicating Von Neumann Probe, creating small, long-lived machines that would know how to rebuild something exactly like our civilization from scratch. Among other data, they would have files on how to build intelligent machines and cloning labs, and files containing the genomes and mind uploads of billions of unique humans and non-human organisms. Copies of existing beings and of long-dead beings could be “manufactured” anywhere, and loaded with the personality traits and memories of their predecessors. Such machines could be distributed throughout our Solar System as an “insurance policy” against our extinction, or sent to other star systems to seed them with life. Some of the probes could also be hidden in remote, protected locations on Earth.
  • We will find out whether alien life exists on Mars and the other celestial bodies in our Solar System. 
  • Intelligent machines will get strong enough to destroy the human race, though it’s impossible to assign odds to whether they’ll choose to do so.
  • If the “Zoo Hypothesis” is right, and if intelligent aliens have decided not to talk to humans until we’ve reached a high level of intellect, ethics, and culture, then the machine-dominated civilization that will exist on Earth this century might be advanced enough to meet their standards. Uncontrollable emotions and impulses, illogical thinking, tribalism, self-destructive behavior, and fear of the unknown will no longer govern individual and group behavior. Aliens could reveal their existence knowing it wouldn’t cause pandemonium. 
  • The government will no longer be synonymous with slowness and incompetence since all bureaucrats will be replaced by machines.
  • Technology will be seamlessly fused with humans, other biological organisms, and the environment itself.  
  • It will be cheaper and more energy-efficient to grow or synthesize almost all types of food in labs or factories than to grow and harvest it in traditional, open-air farms. Shielded from the weather and pests and not dependent on soil quality, the amounts and prices of foods will be highly consistent over time, and worries about farmland muscling out or polluting natural ecosystems will vanish. Animals will no longer be raised for food. Not only will this benefit animals, but it will benefit humans since it will eliminate a a major source of communicable disease (e.g. – new influenza strains originate in farm animals and, thanks to close contact with human farmers, evolve to infect people thanks to a process called “zoonosis”).
  • Additionally, the means will exist to cheaply and artificially produce non-edible organic products, like wool and wood, in industrial quantities. This means anyone will be able to buy animal products that are very expensive today, like snakeskin boots or bear rugs. Unlimited quantities of perfectly simulated animal products that have useful properties, like pillow feathers (softness) or high-grade wool (heat insulation), will be available, and no animals will need to be harmed to make them. Lab-synthesized wood that is superior to “old-growth” timber will also exist.
  • A global network of sensors and drones will identify and track every non-microscopic species on the planet. Cryptids like “bigfoot” and the “Loch Ness Monster” will be definitively proven to not exist. The monitoring network will also make it possible to get highly accurate, real-time counts of entire species populations. Mass gathering of DNA samples–either taken directly from organisms or from biological residue they leave behind–will also allow the full genetic diversity of all non-microscopic species to be known. 
  • That same network of sensors and machines will let us monitor the health of all the planet’s ecosystems and to intervene to protect any species. Interventions could include mass, painless sterilizations of species that are throwing the local ecology out of balance, mass vaccinations of species suffering through disease epidemics, reintroductions of extinct species, or widescale genetic engineering of a species. 
  • The technology and means to implement David Pearce’s global “benign stewardship” of nonhuman organic life will become available.  (https://youtu.be/KDZ3MtC5Et8) After millennia of inflicting damage and pain to the environment and other species, humanity will have a chance to inaugurate an era free of suffering.
  • The mass surveillance network will also look skyward and see all anomalous atmospheric phenomena and UFOs.
  • Robots will clean up all of the garbage created in human history. 
  • Every significant archaeological site will be excavated and every shipwreck found. There will be no work left for people in the antiquities. 
  • Dynamic traffic lane reversal will become the default for all major roadways, sharply increasing road capacity without compromising safety. Autonomous cars that can instantly adapt to changes in traffic direction and that can easily avoid hitting each other even at high speeds will enable the transformation.
  • The Imperial system of weights and measures will fall out of use worldwide. Intelligent machines and posthumans will be able to switch to Metric without a problem.