Things aren’t so Past Tense

Plot:

“Past Tense” is a two-part episode of Star Trek Deep Space Nine that aired in January 1995. It is noteworthy because it was set now, late August / early September 2024. This was another time travel episode where an accident or alien force teleports the crew into the past. For those of you unfamiliar with the Star Trek franchise, Deep Space Nine is set over 300 years in the future, in a nearly utopian era where humans have overcome tribalism, materialism, ignorance, and all forms of injustice, and reap the benefits of radically advanced technologies. Most people dedicate themselves to the arts, science, family, or the exploration of space.

According to Star Trek’s back story, this condition was only achieved after a series of disasters in the late 20th and 21st centuries convinced humanity that war, capitalism, nationalism, and injustice would lead to extinction. One of those events was the “Bell Riots” of 2024, named after the pivotal figure “Gabriel Bell.” By 2024, the U.S. had become a very unequal and callous society, and it was a matter of federal government policy to imprison unemployed people in walled-off urban ghettoes called “sanctuary districts.”

The San Francisco “sanctuary district”

Whatever initial hopes there were for the sanctuary districts to rehabilitate the underclass were dashed due to underfunding and government ineptitude. The sanctuary districts swelled with people, including criminals and the mentally ill, and the promises to provide them with jobs, medical care and other forms of support were broken. The districts effectively became open-air prisons where undesirable people could be dumped, out of sight and out of mind, so the rest of society could live unbothered. The bad conditions inside the ghettoes were not widely known in the rest of America because people just didn’t care.

In “Past Tense,” three Star Trek crewmen from the year 2371 are visiting San Francisco, which is an idyllic and highly advanced city in their time. However, one of their machines malfunctions and sends them back in time to the San Francisco of 2024. As if that isn’t enough of a problem, they materialize on the eve of a massive riot in one of the city’s sanctuary districts. The two male crewman–“Sisko” and “Bashir”–are mistaken for homeless people, immediately arrested by the police for vagrancy, and imprisoned in that sanctuary district. The female crewman, “Jadzia,” has the luck to run into a tech tycoon who takes her to his penthouse. This way, the viewer sees the extremes of 2024 American society.

Rude awakening

As Sisko and Bashir explore the sanctuary district, we see it’s essentially a big homeless encampment where the residents have been given free reign over several square blocks of the city. Residential townhouses are crowded with people sleeping in the rooms, hallways and stairwells, and the streets are full of tents and crude shelters. The public spaces are full of crowds of people of all ages and types. Everyone looks unhappy, poor and dirty. Stern policemen with shotguns patrol the streets while muggings happen in the alleys. The long breadlines, overloaded government waiting rooms, and mentally ill residents going without medicine attest to the state’s failure to serve the sanctuary district’s needs.

As Sisko remembers from history class, the sanctuary district would soon erupt in a mass riot over these problems. During the mayhem, one group of armed residents seized control of a small government office and took the staff hostage, refusing to release them until all the sanctuary districts were dismantled. One of the hostage-takers, “Gabriel Bell,” used savvy and force of personality to prevent his comrades from killing the hostages at crucial moments during the ordeal. During the heavyhanded government response, National Guard troops raid the office, shooting Bell and several other hostage-takers dead. Hundreds more, many of them unarmed poor people caught in the crossfire, are also killed elsewhere. The high death toll (Sisko describes it as “One of the most violent civil disturbances in American history”) and Bell’s martyrdom shift public opinion in the U.S., and the sanctuary districts are dismantled nationwide.

While Sisko and Bashir initially plan to lay low, stay out of the way, and await rescue during this pivotal event, they are forced into action when Gabriel Bell is stabbed dead while trying to save them from muggers. When the riots start the next day, Sisko–who bears a resemblance to Bell–impersonates him to ensure historical events proceed correctly. Sisko succeeds, though he manages to narrowly escape death because the police gunshot proves nonfatal. Though Star Trek has always avoided explicitly describing how today’s world evolved into a techno-utopia, it’s clear that the Bell Riots was a key event that spurred the U.S. to adopt democratic socialism.

On the occasion of this episodes’ set date arriving, there have been a flurry of internet articles praising its prescience. After rewatching the episodes, I’m skeptical of that, and think they’re getting undue credit from people who like anything that highlight America’s problems. In fact, most of the elements in the show’s fictitious 2024 turned out wrong or depict the same reality that existed in 1995 when the episode aired.

Analysis:

Poor people are forced to live in government-run ghettoes in America. As noted, the sanctuary districts are essentially prisons. The police can force people into them at gunpoint for legal infractions common to the homeless (e.g. – public sleeping, no ID), as Sisko and Bashir were. Another character says some residents willingly agreed to move into the sanctuary districts after the government promised to get them jobs, but when the latter reneged, the people discovered it was impossible to leave. This prediction has failed to pass, and everyone still enjoys freedom of movement within America.

Yes, there is enormous wealth inequality in America. Yes, people geographically sort themselves by income, race and ethnicity (as they do in all countries). Yes, this has led to the formation of impoverished ghettoes in most U.S. cities, where conditions are no better than in the fictious sanctuary districts. However, the crucial difference is no one is stopping anyone from moving out of those ghettoes.

“There’s a law against sleeping in the streets.” The older policeman says this right after waking up Sisko and Bashir at gunpoint. Most cities and states have laws against camping in public places, though the enforcement of them has always varied. A 2018 ruling by the Ninth Circuit Court, which has legal authority over the whole U.S. West Coast, cited humanitarian concerns to forbid any authorities in that zone from enforcing such laws. Unsurprisingly, this led to a visible increase in the number of homeless people and their tents in places like San Francisco, and widespread complaints about their behavior.

In June of 2024, the U.S. Supreme Court overrode that ruling, and city and town level police have resumed ticketing and arresting the homeless. In San Francisco since then, the police have typically been respectful when evicting homeless people from sidewalks and public parks, giving them warnings to leave and then maybe a written citation if they refuse. They don’t deal with the issue by pressing loaded guns to heads of sleeping homeless people to wake them up. Efforts to roll back the homeless presence in West Coast towns and cities are only gradually going into effect, and in many places have not started at all.

Not carrying an ID card is a crime. The other legal violation that lands Sisko and Bashir in the sanctuary district is their failure to produce ID cards. Contrary to myth, it is not actually a crime in any part of America to be in a public area without an ID card. I think this was put in the episode to illustrate how draconian the legal system had become in the alternate 2024.

San Francisco is a very unequal place. Having visited San Francisco recently, I think the episode correctly predicted the level of wealth inequality it has today. Moreover, the best estimate is that there are 8,323 homeless people in the city, which is close to the sanctuary district’s population of 10,000. If you add in people who are not homeless but chronically unemployed and living in squalid conditions, the number of San Franciscans whose lives are comparable to the sanctuary district dwellers is some multiple of 8,323.

At the same time, the city boasts a sizeable upper-class, disproportionately comprised of tech sector workers (the tech tycoon who rescues Jadzia personifies San Francisco’s rich). Twenty percent of the city’s households have annual incomes over $200,000, and millionaires are common. The city is home to the super rich and the super poor.

But before we applaud Star Trek’s ability to predict this state of affairs, keep in mind things were essentially the same in 1994 when the episode’s script was written. For many decades, San Francisco has been an unequal city with an unusually large homeless population due to fair weather, lenient laws, and liberal politics. The share of the city’s population that is homeless might even be the same as it was in 1994 (the statistics are imprecise due to methodological problems counting homeless people). And while it wasn’t as large or as powerful as it is today, San Francisco’s economy had a large tech sector back then. Hewlett-Packard, Intel, and Apple were massively profitable companies whose principal facilities were just outside the city in Silicon Valley.

Unemployment is high. The sanctuary district partly exists because there are so many unemployed people. The female case manager also confirms to Sisko and Bashir that not enough jobs are available for the district’s inhabitants. After taking the Processing Center staff hostage, one of the hostage-takers demands is the reinstatement of the “Federal employment Act.” The episode clearly envisioned a 2024 bedeviled by rampant joblessness. This is wrong: the U.S. unemployment rate is only 4.2% and has been below 5% (widely considered the healthy level) for three years. If you ignore the 18 month spike due to the COVID-19 pandemic, the sub-5% era started in December 2015.

Computers are built into desks. Thankfully, no. Also, did the people who made the episode think about why anyone would want such a setup? Upgrading to a new monitor or PC would be harder if the devices were integrated into a piece of furniture. I don’t even see how this is more ergonomic or space-saving than having your monitor on top of your desk and your PC underneath it, like on a special shelf designed just for that purpose.

There are no cell phones. I didn’t see one in either episode. This is obviously completely wrong. If someone from 1995 stepped through a time portal into San Francisco today, they’d surely be struck by how many people were staring at little screens held a few inches in front of their faces.

City governments are full of incompetence. After the police take Sisko and Bashir to the Processing Center, they sit in a crowded waiting room for three hours before seeing a case manager. Used to the highly competent and well-resourced bureaucracies of the distant future, Bashir becomes outraged. I don’t need to do any kind of research to conclude that incompetence and delays are common features of municipal and local governments. That said, things weren’t much better in 1995, so this depiction of 2024 wasn’t much of a prediction, it was just more of the same.

America uses the Metric system. Wrong.

Cashless payments are common. In the sanctuary district, a government worker gives Sisko and Bashir “ration cards,” which they can use to get free food. They look like credit cards that are scanned or swiped. Jadzia also speaks of receiving “credit chips” after tricking the local authorities into believing she’s someone else and merely lost her ID. We never see paper money in the episodes or hear people speak of it. This depiction of 2024 is mostly accurate.

Sisko receives his ration card

Though America has not gone fully cashless, electronic forms of payment are used for most in-person transactions, and many people can go weeks without having to use cash. Forms of “contactless” electronic payment that use near-field communication (NFC) are common now, and bear no resemblance to anything from 1994. I’m old enough to remember that year and the heavy use of cash and even credit card imprinters, and can say things are definitely different now.

There’s a housing shortage in California. The sanctuary district is visibly overcrowded and Sisko and Bashir have to spend hours walking around the first night looking for a townhome with free space for them. Ultimately, they give up and sleep in an outdoor stairwell. Housing has definitely become unaffordable in 2024, and government housing programs have ridiculously long waiting lists. The problems are particularly bad in California, and San Francisco is now one of the least affordable cities on Earth.

This problem is mostly due to a basic imbalance between supply and demand: the number of dwellings has not increased proportionately with U.S. population growth. Contrary to what you might think after watching “Past Tense,” cruel tycoons and the capitalist system have nothing to do with this: average people and government policy do. Overly restrictive laws and grassroots NIMBY activists have stymied the construction of new dwellings across the country, and the government’s decision to basically open the border has led to a recent surge in the illegal immigrant population, and their presence has helped drive up rents.

There’s a cure for schizophrenia. While wandering the sanctuary district, Bashir spots a man on the street who is clearly in the throes of a schizophrenic episode. Bashir is a doctor and says that a cure for the disease exists in 2024, and the fact that it has not been administered to the man is more proof of how callous American society is. Unfortunately, there still is no cure for schizophrenia. The best we can do is to ease and manage the symptoms with medicines and counseling and to keep schizophrenics surveilled as much as possible. Money is certainly a factor in determining the quality of care a sufferer receives, but because the receptivity to treatments varies across the schizophrenic population, some of them barely improve with even the best treatment.

A party among rich San Franciscans. “Jadzia” is at far left.

There is a new polity in the Caribbean. While rubbing elbows with San Francisco’s rich at a party, courtesy of her rich patron, Jadzia overhears them talking about “the Pan Caribbean government.” It’s unclear whether this is a nation-state or some kind of federation of nation-states. No new countries have been created in the Caribbean since 1994, nor have the borders of any preexisting countries there shifted. During the same period, no new trade blocs or supranational political bodies have formed in the region.

Seafloor mining is about to begin. At the same party, another rich guys says his company has received permission from the Pan Caribbean government to start seafloor mining under their waters soon. This prediction is accurate, so long as the word “soon” is strictly adhered to. Across the world, potential seafloor mining projects are being held up by environmental challenges, but it looks like some of them are finally poised to start.

Europe is falling apart. Star Trek got one thing right: Rich people sure do get around in 2024! At the party they also talk about Europe’s implosion thanks to social and economic disorder. The continent is definitely less stable and more under threat today than it was in the 1990s thanks to demographic decline, mass illegal immigration, Brexit, the rise of far-right, the decline of the strongest economy (Germany), and renewed Russian aggression. However, it goes too far to say “Europe is falling apart.” The E.U. is still the world’s second largest economy, living standards remain high in most ways and are rapidly improving in Eastern Europe, and NATO is still intact and now strengthening to confront Russia.

“The Net” is still a common term. In the episodes, the internet is called “the Net.” Only those of us who remember the 90s will remember this archaic term and fully appreciate how cringey saying it is in 2024.

Videoconferencing is common. While pretending to be Gabriel Bell, Sisko uses a computer inside the Processing Center for a videoconference negotiation with the police chief. This prediction is correct, and video calls are very common in 2024. In fact, the technology we have is more advanced since such calls can be made using handheld devices instead of through large computers built into desks.

Links:

  1. San Francisco has only recently started clearing out its large homeless encampments.
    https://www.kqed.org/news/12006541/sfs-homeless-sweeps-have-cleared-over-1200-tents-where-are-people-going
    https://abc7news.com/post/san-francisco-tenderloin-1-month-after-homeless-encampment-crackdown/15291543/
  2. The 2024 homeless count in San Francisco was 8,323.
    https://hsh.sfgov.org/about/research-and-reports/pit/
  3. Counting homeless people is notoriously error-prone, and there’s reason to believe the homeless share of San Francisco’s population is the same in 2024 as it was in 1994.
    https://darrellowens.substack.com/p/san-francisco-40-years-of-failure
  4. Cash is now used in only 12% of in-store transactions in America.
    https://capitaloneshopping.com/research/cash-vs-credit-card-spending-statistics/
  5. In 2022, 41% of Americans said they routinely went more than a week without using cash.
    https://www.pewresearch.org/short-reads/2022/10/05/more-americans-are-joining-the-cashless-economy/
  6. In 2024, San Francisco was ranked as the eighth least affordable city on Earth.
    https://www.usatoday.com/story/money/2024/06/26/impossibly-unaffordable-housing-cities/74195450007/
  7. Schizophrenia still has no cure.
    https://my.clevelandclinic.org/health/diseases/4568-schizophrenia
  8. After years of false starts, seafloor mining now looks poised to start.
    https://www.scientificamerican.com/article/deep-sea-mining-could-begin-soon-regulated-or-not

My future predictions (2024 iteration)

If it’s January, it means it’s time for me to update my big list of future predictions! I used the 2023 version of this document as a template, and made edits to it as needed. For the sake of transparency, I’ve indicated recently added content by bolding it, and have indicated deleted or moved content with strikethrough.

Like any futurist worth his salt, I’m going to put my credibility on the line by publishing a list of my future predictions. I won’t modify or delete this particular blog entry once it is published, and if my thinking about anything on the list changes, I’ll instead create a new, revised blog entry. Furthermore, as the deadlines for my predictions pass, I’ll reexamine them.

I’ve broken down my predictions by the decade. Any prediction listed under a specific decade will happen by the end of that decade, unless I specify some other date (e.g. – “X will happen early in this decade.”).

2020s

  • Better, cheaper solar panels and batteries (for grid power storage and cars) will make clean energy as cheap and as reliable as fossil fuel power for entire regions of the world, including some temperate zones. As cost “tipping points” are reached, it will make financial sense for tens of millions of private homeowners and electricity utility companies to install solar panels on their rooftops and on ground arrays, respectively. This will be the case even after government clean energy subsidies are inevitably retracted. However, a 100% transition to clean energy won’t finish in rich countries until the middle of the century, and poor countries will use dirty energy well into the second half of the century.
  • Fracking and the exploitation of tar sands in the U.S. and Canada will together ensure growth in global oil production until around 2030, at which time the installed base of clean energy and batteries will be big enough to take up the slack. There will be no global energy crisis.
  • This will be a bad decade for Russia as its overall population shrinks, its dependency ratio rises, and as low fossil fuel prices and sanctions keep hurting its economy. Russia will fall farther behind the U.S., China, and other leading countries in terms of economic, military, and technological might.
  • China’s GDP will surpass America’s, India’s population will surpass China’s, and China will never claim the glorious title of being both the richest and most populous country.
  • Improvements to smartphone cameras, mirrorless cameras, and perhaps light-field cameras will make D-SLRs obsolete. 
  • Augmented reality (AR) glasses that are much cheaper and better than the original Google Glass will make their market debuts and will find success in niche applications. Some will grant wearers superhuman visual abilities in the forms of zoom-in and night vision.
  • Virtual reality (VR) gaming will go mainstream as the devices get better and cheaper. It will stop being the sole domain of hardcore gamers willing to spend over $1,000 on hardware.
  • Vastly improved VR goggles with better graphics and no need to be plugged into desktop PCs will hit the market. They won’t display perfectly lifelike footage, but they will be much better than what we have today, and portable. 
  • “Full-immersion” audiovisual VR will be commercially available by the end of the decade. These VR devices will be capable of displaying video that is visually indistinguishable from real reality: They will have display resolutions (at least 60 pixels per degree of field of view), refresh rates, head tracking sensitivities, and wide fields of view (210 degrees wide by 150 degrees high) that together deliver a visual experience that matches or exceeds the limits of human vision. These high-end goggles won’t be truly “portable” devices because their high processing and energy requirements will probably make them bulky, give them only a few hours of battery life (or maybe none at all), or even require them to be plugged into another computer. Moreover, the tactile, olfactory, and physical movement/interaction aspects of the experience will remain underdeveloped.
  • “Deepfake” pornography will reach new levels of sophistication and perversion as it becomes possible to seamlessly graft the heads of real people onto still photos and videos of nude bodies that closely match the physiques of the actual people. New technology for doing this will let amateurs make high-quality deepfakes, meaning any person could be targeted. It will even become possible to wear AR glasses that interpolate nude, virtual bodies over the bodies real people in the wearer’s field of view to provide a sort of fake “X-ray-vision.” The AR glasses could also be used to apply other types of visual filters that degraded real people within the field of view.
  • “Smart home”/”Wired home” technology will become mature and widespread in developed countries.
  • Video gaming will dispense with physical media, and games will be completely streamed from the internet or digitally downloaded. Business that exist just to sell game discs (Gamestop) will shut down.
  • Instead of a typical home entertainment system having a whole bunch of media discs, different media players and cable boxes, there will be one small, multipurpose box that, among other things, boosts WiFi to ensure the TV and all nearby devices can get signals at multi-Gb/s speeds.
  • Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language.
  • Self-driving vehicles will start hitting the roads in large numbers in rich countries. The vehicles won’t drive as efficiently as humans (a lot of hesitation and slowing down for little or no reason), but they’ll be as safe as human drivers. Long-haul trucks that ply simple highway routes will be the first category of vehicles to be fully automated. The transition will be heralded by a big company like Wal-Mart buying 5,000 self-driving tractor trailers to move goods between its distribution centers and stores. Last-mile delivery–involving weaving through side streets, cities and neighborhoods, and physically carrying packages to peoples’ doors–won’t be automated until after this decade. Self-driving, privately owned passenger cars will stay few in number and will be owned by technophiles, rich people, and taxi cab companies.
  • Thanks to improvements in battery energy density and cost, and in fast-charging technology, electric cars will become cost-competitive with gas-powered cars this decade without government subsidies, leading to their rapid adoption. Electric cars are mechanically simpler and more reliable than gas-powered ones, which will hurt the car repair industry. Many gas stations will also go bankrupt or convert to fast charging stations.
  • Quality of life for people living and working in cities and near highways will improve as more drivers switch to quieter, emissionless electric vehicles. The noise reduction will be greatest in cities and suburbs where traffic moves slowly: https://cleantechnica.com/2016/06/05/will-electric-cars-make-traffic-quieter-yes-no/
  • Most new power equipment will be battery-powered, so machines like lawn mowers, leaf blowers, and chainsaws will be much quieter and less polluting than they are today. Batteries will be energy-dense enough to compete with gasoline in these use cases, and differences in overall equipment weight and running time will be insignificant. The notion of a neighbor shattering your sense of peace and quiet with loud yard work will get increasingly alien. 
  • A machine will pass the Turing Test by the end of this decade. The milestone will attract enormous amounts of attention and will lead to several retests, some of which the machine will fail, proving that it lacks the full range of human intelligence. It will lead to debate over the Turing Test’s validity as a measure of true intelligence (Ray Kurzweil actually talked about this phenomenon of “moving the goalposts” whenever we think about how smart computers are), and many AI experts will point out the existence of decades-long skepticism in the Turing Test in their community.
  • The best AIs circa 2029 won’t be able to understand and upgrade their own source codes. They will still be narrow AIs, albeit an order of magnitude better than the ones we have today.
  • Machines will become better than humans at the vast majority of computer, card, and board games. The only exceptions will be very obscure games or recently created games that no one has bothered to program an AI to play yet. But even for those games, there will be AIs with general intelligence and learning abilities that will be “good enough” to play as well as average humans by reading the instruction manuals and teaching themselves through simulated self-play.
  • The cost of getting your genome sequenced and expertly interpreted will drop below $1,000, and enough about the human genome will have been deciphered to make the cost worth the benefit for everyone. By the end of the decade, it will be common for newborns in rich countries to have their genomes sequenced.
  • Better technology will also let pregnant women noninvasively obtain their fetuses’ DNA, at affordable cost.
  • Cheap DNA tests that can measure a person’s innate IQ and core personality traits with high accuracy will become widely available. There is the potential for this to cause social problems. 
  • At-home medical testing kits and diagnostic devices like swallowable camera-pills will become vastly better and more common.
  • Space tourism will become routine thanks to privately owned spacecraft. 
  • Marijuana will be effectively decriminalized in the U.S. Either the federal government will overturn its marijuana prohibitions, or some patchwork of state and federal bans will remain but be so weakened and lightly enforced that there will be no real government barriers to obtaining and using marijuana. 
  • By the end of this decade, photos of almost every living person will be available online (mostly on social media). Apps will exist that can scan through trillions of photos to find your doppelgangers. 
  • In 2029, the youngest Baby Boomer and the oldest Gen Xer will turn 65. 
  • Drones will be used in an attempted or successful assassination of at least one major world leader (Note: Venezuela’s Nicholas Maduro wasn’t high profile enough).

2030s

  • VR and AR goggles will become refined technologies and probably merge into a single type of lightweight device. Like smartphones today, anyone who wants the glasses in 2030 will have them. Even poor people in Africa will be able to buy them. A set of the glasses will last a day on a single charge under normal use.  
  • Augmented reality contact lenses will enter mass production and become widely available, though they won’t be as good as AR glasses and they might need remotely linked, body-worn hardware to provide them with power and data. https://www.inverse.com/article/31034-augmented-reality-contact-lenses
  • The bulky VR goggles of the 2020s will transform into lightweight, portable V.R. glasses thanks to improved technology. The glasses will display lifelike footage. However, the best VR goggles will still need to be plugged into other devices, like routers or PCs.
  • Wall-sized, thin, 8K or even 16K TVs will become common in homes in rich countries, and the TVs will be able to display 3D picture without the use of glasses, though the 3D effect will only be visible to people sitting directly in front of the screen. A sort of virtual reality chamber could be created at moderate cost by installing those TVs on all the walls of a room to create a single, wraparound screen.
  • It will be common for celebrities of all kinds to make money by “hanging out” with paying customers in virtual reality. For some lower-tier celebrities, this will be their sole source of income. 
  • Functional CRT TVs and computer monitors will only exist in museums and in the hands of antique collectors. This will also be true for DLP TVs. 
  • The video game industry will be bigger than ever and considered high art.
  • It will be standard practice for AIs to be doing hyperrealistic video game renderings, and for NPCs to behave very intelligently thanks to better AI. 
  • Books and computer tablets will merge into a single type of device that could be thought of as a “digital book.” It will be a book with several hundred pages made of thin, flexible digital displays (perhaps using ultra-energy efficient e-ink) instead of paper. At the tap of a button, the text on all of the pages will instantly change to display whichever book the user wanted to read at that moment. They could also be used as notebooks in which the user could hand write or draw things with a stylus, which would be saved as image or text files. The devices will fuse the tactile appeal of old-fashioned books with the content flexibility of tablet computers.
  • Loose-leaf sheets of “digital paper” will also exist thanks to the same technology.
  • Commercially available, head-worn, brain-computer-interface devices (BCIs) linked to augmented reality eyewear will gift humans with crude forms of telepathy and telekinesis. For example, a person wearing the devices could compose a short sentence merely by thinking about it, see the text projected across his augmented field of view, use his thoughts to make any needed edits, and then transmit the sentence to another person or machine, merely by thinking a “Send” command. The human recipient of the message with the same BCI/eyewear setup would see the text projected across his field of view and could compose a response through the same process the first person used. BCIs will also let humans send commands to a machines, like printers. For almost all use cases, this type of communication will be less efficient than traditional alternatives, like manually typing a text message or clicking the “Print” button at the top of a word processing application, but it will be an important proof of concept demonstration that will point to what is to come later in the century.
  • Loneliness, social isolation, and other problems caused by overuse of technology and the atomized structure of modern life will be, ironically, cured to a large extent by technology. Chatbots that can hold friendly (and even funny and amusing) conversations with humans for extended periods, diagnose and treat mental illnesses as well as human therapists, and customize themselves to meet the needs of humans will become ubiquitous. The AIs will become adept at analyzing human personalities and matching lonely people with friends and lovers, at matching them with social gatherings (including some created by machines), and at recommending daily activities that will satisfy them, hour-by-hour. Machines will come to understand that constant technology use is antithetical to human nature, so in order to promote human wellness, they find ways to impel humans to get out of their houses, interact with other humans, and be in nature. Autonomous taxis will also be widespread and will have low fares, making it easier for people who are isolated due to low income or poor health (such as many elderly people) to go out.
  • Chatbots will steadily improve their “humanness” over the decade. The instances when AIs say or do something nonsensical will get less and less frequent. Dumber people, children, and people with some types of mental illness will be the first ones to start insisting their AIs are intelligent like humans. Later, average people will start claiming the same. By the end of the decade, a personal assistant AI like “Samantha” from the movie Her will be commercially available. AI personal assistants will have convincing, simulated personalities that seem to have the same depth as humans. Users will be able to pick from among personality profiles or to build their own.  
  • Chatbots will be able to have intelligent conversations with humans about politics and culture, to identify factually wrong beliefs, biases, and cognitive blind spots in individuals, and to effectively challenge them through verbal discussion and debate. The potential will exist for technology to significantly enlighten the human population and to reduce sociopolitical polarization. However, it’s unclear how many people will choose to use this technology. 
  • Turing-Test-capable chatbots will also supercharge the problem of online harassment, character assassination, and deliberate disinformation by spamming the internet with negative reviews, bullying messages, emails to bosses, and humiliating “deepfake” photos and videos of targeted people. Today’s “troll farms” where humans sit at computer terminals following instructions to write bad reviews for specific people or businesses will be replaced by AI trolls that can pump out orders of magnitude more content per day. And just as people today can “buy likes” for their social media accounts or business webpages, people in the future will be able, at low cost, to buy harassment campaigns against other people and organizations they dislike. Discerning between machine-generated and human-generated internet content will be harder and more important than ever.
  • House robots will start becoming common in rich countries. They will be slower at doing household tasks than humans, but will still save people hours of labor per week. They may or may not be humanoid. For the sake of safety and minimizing annoyance, most robots will do their work when humans aren’t around. As in, you would come home from work every day and find the floors vacuumed, the lawn mowed, and your laundered clothes in your dresser, with nary a robot in sight since it will have gone back into its closet to recharge. You would never hear the commotion of a clothes washing machine, a vacuum cleaner or a lawnmower. All the work would get done when you were away, as if by magic.
  • People will start having genuine personal relationships with AIs and robots. For example, people will resist upgrading to new personal assistant AIs because they will have emotional attachments to their old ones. The destruction of a helper robot or AI might be as emotionally traumatic to some people as the death of a human relative.
  • Farm robots that are better than humans at fine motor tasks like picking strawberries humans will start becoming widespread.  
  • Self-driving cars will become cheap enough and practical enough for average income people to buy, and their driving behavior will become as efficient as an average human. Over the course of this decade, there will be rapid adoption of self-driving cars in rich countries. Freed from driving, people will switch to doing things like watching movies/TV and eating. Car interiors will change accordingly. Road fatalities, and the concomitant demands for traffic police, paramedics, E.R. doctors, car mechanics, and lawyers will sharply decrease. The car insurance industry will shrivel, forcing consolidation. (Humans in those occupations will also face increasing levels of direct job competition from machines over the course of the decade.)
  • Private owners of autonomous cars will start renting them out while not in use as taxis and package delivery vehicles. Your personal, autonomous car will drive you to work, then spend eight hours making money for you doing side jobs, and will be waiting for you outside your building at the end of the day.
  • The “big box” business model will start taking over the transportation and car repair industry thanks to the rise of electric, self-driving vehicles and autonomous taxis in place of personal car ownership. The multitudes of small, scattered car repair shops will be replaced by large, centralized car repair facilities that themselves resemble factory assembly lines. Self-driving vehicles will drive to them to have their problems diagnosed and fixed, sparing their human owners from having to waste their time sitting in waiting rooms.
  • The same kinds of facilities will make inroads into the junk yard industry, as they would have all the right tooling to cheaply and rapidly disassemble old vehicles, test the parts for functionality, and shunt them to disposal or individual resale. (The days of hunting through junkyards by yourself for a car part you need will eventually end–it will all be on eBay. )
  • Car ownership won’t die out because it will still be a status symbol, and having a car ready in your driveway will always be more convenient than having to wait even just two minutes for an Uber cab to arrive at the curb. People are lazy.
  • The ad hoc car rental model exemplified by autonomous Uber cabs and private people renting out their autonomous cars when not in use faces a challenge since daily demand for cars peaks during morning rush hour and afternoon rush hour. In other words, everyone needs a car at the same time each day, so the ratio of cars : people can’t deviate much from, say, 1:2. Of course, if more people telecommuted (almost certain in the future thanks to better VR, faster broadband, and tech-savvy Millennials reaching middle age and taking over the workplace), and if flexible schedules became more widespread (also likely, but within certain limits since most offices can’t function efficiently unless they have “all hands on deck” for at least a few hours each day), the ratio could go even lower. However, there’s still a bottom limit to how few cars a country will need to provide adequate daily transportation for its people.
  • Private delivery services will get cheaper and faster thanks to autonomous vehicles.
  • Automation will start having a major impact on the global economy. Machines will compensate for the shrinkage of the working-age human population in the developed world. Countries with “graying” populations like Japan and Germany will experience a new wave of economic growth. Demand for immigrant laborers will decrease across the world because of machines.
  • There will be a worldwide increase in the structural unemployment rate thanks to better and cheaper narrow AIs and robots. A plausible scenario would be for the U.S. unemployment rate to be 10%–which was last the case at the nadir of the Great Recession–but for every other economic indicator to be strong. The clear message would be that human labor is becoming decoupled from the economy.
  • Combining all the best AI and robotics technologies, it will be possible to create general-purpose androids that could function better in the real world (e.g. – perform in the workplace, learn new things, interact with humans, navigate public spaces, manage personal affairs) than the bottom 10% of humans (e.g. – elderly people, the disabled, criminals, the mentally ill, people with poor language abilities or low IQs), and in some narrow domains, the androids will be superhuman (e.g. – physical strength, memory, math abilities). Note that businesses will still find it better to employ task-specific, non-human-looking robots instead of general purpose androids. The androids will be very few in number by the end of 2039, and will be technology demonstrators and prototypes that get a lot of media coverage at carefully controlled tech company demo events. They won’t be available for any person to purchase, won’t roam around public spaces, and won’t have important jobs. At a minimum, each one will cost hundreds of thousands of dollars.
  • By the end of this decade, only poor people, lazy people, and conspiracy theorists (like anti-vaxxers) won’t have their genomes sequenced. It will be trivially cheap, and in fact free for many people (some socialized health care systems will fully subsidize it), and enough will be known about the human genome to make it worthwhile to have the information.
  • Computers will be able to accurately deduce a human’s outward appearance based on only a DNA sample. This will aid police detectives, and will have other interesting uses, such as allowing parents to see what their unborn children will look like as adults, or allowing anyone to see what they’d look like if they were of the opposite sex (one sex chromosome replaced). 
  • Trivially cheap gene sequencing and vastly improved knowledge of the human genome will give rise to a “human genome black market,” in which people secretly obtain DNA samples from others, sequence them, and use the data for their own ends. For example, a politician could be blackmailed by an enemy who threatened to publish a list of his genetic defects or the identities of his illegitimate children. Stalkers (of celebrities and ordinary people) would also be interested in obtaining the genetic information of the people they were obsessed with. It is practically impossible to prevent the release of one’s DNA since every discarded cup, bottle, or utensil has a sample. 
  • Markets will become brutally competitive and efficient thanks to AIs. Companies will sharply grasp consumer demand through real-time surveillance, and will use dynamic pricing much more widely and for everyday goods and services, and consumers will be alerted to bargains by their personal AIs and devices (e.g. – your AR glasses will visually highlight good deals as you walk through the aisles of a store). Your personal assistant AIs and robots will look out for your self-interest by countering the efforts of other AIs to sway your spending habits in ways that benefit companies and not you.
  • “Digital immortality” will become possible for average people. Personal assistant AIs, robot servants, and other monitoring devices will be able, through observation alone, to create highly accurate personality profiles of individual humans, and to anticipate their behavior with high fidelity. Voices, mannerisms and other biometrics will be digitally reproducible without any hint of error. Digital simulacra of individual humans will be further refined by having them take voluntary personality tests, and by uploading their genomes, brain scans and other body scans. Even if all of the genetic and biological data couldn’t be made sense of at the moment it was uploaded to an individual’s digital profile, there will be value in saving it since it might be decipherable in the future. (Note that “digital immortality” is not the same as “mind uploading.”)
  • Life expectancy will have increased by a few years thanks to pills and therapies that slightly extend human lifespan. Like, you take a $20 pill each day starting at age 20 and you end up dying at age 87 instead of age 84.
  • Global oil consumption will peak as people continue switching to other power sources.
  • Earliest possible date for the first manned Mars mission.
  • Machines will become as good as professional humans at language translation.
  • Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language. [Moved to the 2020s due to more rapid advances in this technology in 2022 and 2023]
  • Computers will also be able to automatically enhance and upscale old films by accurately colorizing them, removing defects like scratches, and sharpening or focusing footage (one technique will involve interpolating high-res still photos of long-dead actors onto the faces of those same actors in low-res moving footage). Computer enhancement will be so good that we’ll be able to watch films from the early 20th century with near-perfect image and audio clarity.
  • CGI will get so refined than moviegoers with 20/20 vision won’t be able to see the difference between footage of unaltered human actors and footage of 100% CGI actors.
  • Lifelike CGI and “performance capture” will enable “digital resurrections” of dead actors. Computers will be able to scan through every scrap of footage with, say, John Wayne in it, and to produce a perfect CGI simulacrum of him that even speaks with his natural voice, and it will be seamlessly inserted into future movies. Elderly actors might also license movie studios to create and use digital simulacra of their younger selves in new movies. The results will be very fascinating, but might also worsen Hollywood’s problem with making formulaic content.
  • Machines will be able to imitate the voices of specific humans so accurately that most human listeners won’t be able to tell the difference. Those that can reliably detect any difference will find it very faint.
  • Smartphone apps will be able to remotely monitor a person’s vital statistics and to quickly derive a wealth of data about things like their emotional state, health, age, and truthfulness from factors like their heart rate, breathing pattern, body movements, microexpressions, and speech patterns.
  • Tiny cameras that can capture and transmit high resolution footage will be available for a few dollars apiece. A device the size of a sugar cube that has enough memory and battery life to record video footage for several hours would fit the bill.
  • China’s military will get strong enough to defeat U.S. forces in the western Pacific. This means that, in a conventional war for control of the Spratly Islands and/or Taiwan, China would have >50% odds of winning. This shift in the local balance of power does not mean China will start a conflict. 
  • The quality and sophistication of China’s best military technology will surpass Russia’s best technology in all or almost all categories. However, it will still lag the U.S. 

2040s

  • The world and peoples’ outlooks and priorities will be very different than they were in 2019. Cheap renewable energy will have become widespread and totally negated any worries about an “energy crisis” ever happening, except in exotic, hypothetical scenarios about the distant future. There will be little need for immigration thanks to machine labor and cross-border telecommuting (VR, telepresence, and remote-controlled robots will be so advanced that even blue-collar jobs involving manual labor will be outsourced to workers living across borders). Moreover, there will be a strong sense in most Western countries that they’re already “diverse enough,” and that there are no further cultural benefits to letting in more foreigners since large communities of most foreign ethnic groups will already exist within their borders. There will be more need than ever for strong social safety nets and entitlement programs thanks to technological unemployment. AI will be a central political and social issue. It won’t be the borderline sci-fi, fringe issue it was in 2019.
  • Automation, mass unemployment, wealth inequalities between the owners of capital and everyone else, and differential access to expensive human augmentation technologies (like genetic engineering) will produce overwhelming political pressure for some kind of wealth redistribution and social safety net expansion. Countries that have diligently made small, additive reforms as necessary over the preceding decades will be untroubled. However, countries that failed to adapt their political and economic systems will face upheaval.
  • 2045 will pass without the Technological Singularity happening. Ray Kurzweil will either celebrate his 97th birthday in a wheelchair, or as a popsicle frozen at the Alcor Foundation.
  • Supercomputers that match or surpass upper-level estimates of the human brain’s computational capabilities will cost a few hundred thousand to a few million dollars apiece, meaning tech companies and universities will be able to afford large numbers of them for AI R&D projects, accelerating progress in the field. Hardware will no longer be the limiting factor to building AGI. If it hasn’t been built yet, it will be due to failure to figure out how to arrange the hardware in the right way to support intelligent thought, and/or to a failure to develop the necessary software. 
  • With robots running the economy, it will be common for businesses to operate 24/7: restaurants will never close, online orders made at 3:00 am will be packed in boxes by 3:10 am, and autonomous delivery trucks will only stop to refuel, exchange cargo, or get preventative maintenance.
  • Advanced energy technology, robot servants, 3D printers, telepresence, and other technologies will allow people to live largely “off-grid” if they choose, while still enjoying a level of comfort that 2019 people would envy.
  • Robot servants will be common in upper-income and middle-class households across the developed world. Some will be function-specific, like autonomous lawn mowers, while others will be multifunctional, like robot butlers. They will work more slowly than humans and will make mistakes more often, but nevertheless, they will save their human owners many hours of work each week. A high-quality multifunction robot servant will cost $5,000 – $20,000 in today’s money. In other words, cheaper than a new car, but still a significant investment of money.
  • Androids will be significantly better than they were in the 2030s, and aspects of their physiques, intelligence, and capabilities will overlap even more with humans, but they still won’t be able to pass as one of us in normal situations. If you could examine one at very close distance, you would see that its skin and other external features were less detailed than those of real humans. Their body movements will be clumsier and more limited than the average human’s, probably leaving them with the same overall reflexes, nimbleness, balance, and speed as an elderly human. They will also lack the battery life to function for a whole work day in physically demanding occupations.
  • Recycling will become much more efficient and practical thanks to house robots properly cleaning, sorting, and crushing/compacting waste before disposing of it. Automated sorting machines at recycling centers will also be much better than they are today. Today, recycling programs are hobbled because even well-meaning humans struggle to remember which of their trash items are recyclable and which aren’t since the acceptable items vary from one municipality to the next, and as a result, recycling centers get large amounts of unusable material, which they must filter out at great cost. House robots would remember it perfectly.
  • Thanks to this diligence, house robots will also increase backyard composting, easing the burden on municipal trash services. 
  • Genetic engineering of offspring becomes about as common among richer people as IVF is among them in 2023. The engineered offspring aren’t “superhumans”–they’re slightly better than they would have been without technological intervention.
  • It will be common for cities, towns and states to heavily restrict or ban human-driven vehicles within their boundaries. A sea change in thinking will happen as autonomous cars become accepted as “the norm,” and human-driven cars start being thought of as unusual and dangerous.
  • There will be something that could be called a “self-driving RV vacation industry” wherein a person would rent a self-driving RV that would be programmed to take them on a multi-day tour of some area, hitting all the important sights. At each one, a virtual tour guide that the person could see, hear and interact with through smart glasses would lead them around on foot.
  • Over 90% of new car sales in developed countries will be for electric vehicles. Just as the invention of the automobile transformed horses into status goods used for leisure, the rise of electric vehicles will transform internal combustion vehicles into a niche market for richer people. 
  • A global “family tree” showing how all humans are related will be built using written genealogical records and genomic data from the billions of people who have had their DNA sequenced. It will become impossible to hide illegitimate children, and it will also become possible for people to find “genetic doppelgangers”–other people they have no familial relationship to, but with whom, by some coincidence, they share a very large number of genes. 
  • Improved knowledge of human genetics and its relevance to personality traits and interests will strengthen AI’s ability to match humans with friends, lovers, and careers. Rising technological unemployment will create a need for machines to match human workers with the remaining jobs in as efficient a manner as possible.
  • People with distinctive personalities (particularly vibrant, funny, or sexy) will routinely sell “digital copies” of themselves for other people to download and use as AI personal assistants. This will be analogous to today’s ability to select different voices for personal GPS devices. Additionally, users will be able to tweak “base versions” of downloaded personalities to suit their unique preferences. 
  • The digital personalities of fictitious people, like movie and cartoon characters, and of long-dead people, will also be downloadable. 
  • Realistic robot sex bots that can move and talk will exist. They won’t perfectly mimic humans, but will be “good enough” for most users. Using them will be considered weird and “for losers” at first, but in coming decades it will go mainstream, following the same pattern as Internet dating. [If we think of sex as a type of task, and if we agree that machines will someday be able to do all tasks better than humans, then it follows that robots will be better than humans at sex.]  
  • Augmented reality contact lenses will give people superhuman vision.
  • 3D TVs will improve. Among other things, multiple viewers watching the same TV from different viewing angles will experience the 3D visual effect. 
  • Any person will be able to use his personal technologies to create a highly immersive audiovisual experience almost anywhere. For example, a person’s computer glasses could simulate the experience of being in an IMAX movie theater. Alternatively, the person could use his smartphone or another device to beam video images against a wall, creating an ad hoc theater for real. Major improvements to the price-performance and energy efficiency of LEDs and lasers will let small personal devices to have inbuilt light projectors that match the quality of professional-quality projectors that cost thousands of dollars today.
  • Obesity rates in rich and middle income countries peak and start declining, mostly thanks to the weight loss drugs invented in the 2020s becoming open to generic manufacture. 
  • The richest person alive will achieve a $1 trillion net worth.
  • There will be drones that can use facial recognition and other forms of recognition to autonomously track down specific people and kill them. The simplest versions of those weapons will be small kamikaze drones that crash into their targets and blow up on impact.
  • At least one major military will be using some type of combat robot (whether it is airborne, seaborne, or terrestrial) that is empowered to fire on human enemies autonomously. 

2050s

  • This is the earliest possible time that AGI/SAI will be invented. It will not be able to instantly change everything in the world or to initiate a Singularity, but it will rapidly grow in intelligence, wealth, and power. It will probably be preceded by successful computer simulations of the brains of progressively more complex model organisms, such as flatworms, fruit flies, and lab rats. Also, there won’t be a discrete moment in time when machines “become intelligent”–instead, there will be a multi-year period of time where machines surpass humans in an ever-growing number of areas. Looking back, it won’t be possible to say at which moment the first machine became intelligent. Using different definitions and tests of “intelligence,” it will be possible to argue that AGI/SAI was achieved by different computers at different points in the multi-year period of time. (Likewise, biologists can’t agree on the exact moment or even the exact millennium when our hominid ancestors became “intelligent.”)
  • Humans will be heavily dependent upon their machines for almost everything (e.g. – friendship, planning the day, random questions to be answered, career advice, legal counseling, medical checkups, driving cars), and the dependency will be so ingrained that humans will reflexively assume that “The Machines are always right.” Consciously and unconsciously, people will yield more and more of their decision-making and opinion-forming to machines, and find that they and the world writ large are better off for it. This will be akin to having an angel on your shoulder watching your surroundings and watching you, and giving you constructive advice all the time. 
  • In the developed world, less than 50% of people between age 22 and 65 will have gainful full-time jobs. However, if unprofitable full-time jobs that only persist thanks to government subsidies (such as someone running a small coffee shop and paying the bills with their monthly UBI check) and full-time volunteer “jobs” (such as picking up trash in the neighborhood) are counted, most people in that age cohort will be “doing stuff” on a full-time basis.  
  • The doomsaying about Global Warming will start to quiet down as the world’s transition to clean energy hits full stride and predictions about catastrophes from people like Al Gore fail to pan out by their deadlines. Sadly, people will just switch to worrying about and arguing about some new set of doomsday prophecies about something else.
  • By almost all measures, standards of living will be better in 2050 than today. People will commonly have all types of wonderful consumer devices and appliances that we can’t even fathom. However, some narrow aspects of daily life are likely to worsen, such as overcrowding and further erosion of the human character. Just as people today have short memories and take too many things for granted, so shall people in the 2050s fail to appreciate how much the standard of living has risen since today, and they will ignore all the steady triumphs humanity has made over its problems, and by default, people will still believe the world is constantly on the verge of collapsing and that things are always getting worse.
  • Cheap desalination will provide humanity with unlimited amounts of drinking water and end the prospect of “water wars.” 
  • Mass surveillance and ubiquitous technology will have minimized violent crime and property crime in developed countries: It will be almost impossible to commit such crimes without a surveillance camera or some other type of sensor detecting the act, or without some device recording the criminal’s presence in the area at the time of the act. House robots will contribute by effectively standing guard over your property at night while you sleep. 
  • It will be common for people to have health monitoring devices on and inside of their bodies that continuously track things like their heart rate, blood pressure, respiration rate, and gene expression. If a person has a health emergency or appears likely to have one, his or her devices will send out a distress signal alerting EMS and nearby random citizens. If you walked up to such a person while wearing AR glasses, you would see their vital statistics and would receive instructions on how to assist them (i.e. – How to do CPR). Robots will also be able to render medical aid. 
  • Cities and their suburbs across the world will have experienced massive growth since 2019. Telepresence, relatively easy off-grid living, and technological unemployment will not, on balance, have driven more people out of metro areas than have migrated into them. Farming areas full of flat, boring land will have been depopulated, and many farms will be 100% automated. The people who choose to leave the metro areas for the “wilderness” will concentrate in rural areas (including national parks) where the climate is good, the natural scenery is nice, and there are opportunities for outdoor recreation. Real estate prices will, in inflation-adjusted terms, be much higher in most metro areas and places with natural beauty than they were in 2020 because the “supply” of those prime locations is almost fixed, whereas the demand for them is elastic and will rise thanks to population growth, rising incomes, and the aforementioned technology advancements.
  • Therapeutic cloning and stem cell therapies will become useful and will effectively extend human lifespan. For example, a 70-year-old with a failing heart will be able to have a new one grown in a lab using his own DNA, and then implanted into his chest to replace the failing original organ. The new heart will be equivalent to what he had when at age 18 years, so it will last another 52 years before it too fails. In a sense, this will represent age reversal to one part of his body. In a sense, this will represent age reversal to one part of his body.
  • As a result of the above technologies, it will be much rarer for people in rich countries to die waiting for organ transplants than it is now, in 2022.
  • The first healthy clone of an adult human will be born.
  • The cloning of cats and dogs will get cheap enough for middle income people to afford it. 
  • Many factories, farms, and supply chains will be 100% automated, and it will be common for goods to not be touched by a human being’s hands until they reach their buyers. Robots will deliver Amazon packages to your doorstep and even carry them into your house. Items ordered off the internet will appear inside your house a few hours later, as if by magic. 
  • Smaller versions of the robots used on automated farms will be available at low cost to average people, letting them effortlessly create backyard gardens. This will boost global food production and let people have greater control over where their food comes from and what it contains. 
  • The last of America’s Cold War-era weapon platforms (e.g. – the B-52 bomber, F-15 fighter, M1 Abrams tank, Nimitz aircraft carrier) will finally be retired from service. There will be instances where four generations of people from the same military family served on the same type of plane or ship. 
  • Cheap guided bullets, which can make midair course changes and be fired out of conventional man-portable rifles, will become common in advanced armies. 
  • Personal “cloaking devices” made of clothes studded with pinhole cameras and thin, flexible sheets of LEDs, colored e-ink, or some metamaterial with similar abilities will be commercially available. The cameras will monitor the appearance of the person’s surroundings and tell the display pixels to change their colors to match.
  • The “cloaking” outfits will also have benign applications related to fashion and everyday utility. People wearing them could use them to display morphing patterns and colors of their choice. It would even be possible to become a “walking TV.” The pixels could also be made to glow bright white, allowing the wearer to turn any part of his body into a flashlight. Ski masks made of the same material would let wearers change their facial features, fooling most face recognition cameras and certainly fooling the unaided eyes of humans, at least at a distance.
  • Powered exoskeletons will become practical for a wide range of applications, mainly due to improvements in batteries. For example, a disabled person could use a lightweight exoskeleton with a battery the size of a purse to walk around for a whole day on a single charge, and a soldier in a heavy-duty exoskeleton with a large backpack battery could do a day of marching on a single charge. (Note: Even though it will be technologically possible to equip infantrymen with combat exoskeletons, armies might reject the idea due to other impracticalities.)
  • There will be no technological or financial barrier to building powered combat exoskeletons that have cloaking devices. 
  • The richest person alive will achieve a $1 trillion net worth. [Moved to the 2040s due to shifting trends in inflation and net worth growth among the richest people.]
  • It will be technologically and financially feasible for small aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by carbon-neutral synthetic fossil fuels that cost no more than normal fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells.
  • Cheap guided bullets, capable of midair course changes to hit targets and of being fired out of conventional rifles, will become common in advanced armies. (One or two degrees of course change per 100 meters of bullet travel is realistic. ) Practical, affordable rifles capable of limited self-aiming will also exist (similar to the “Smartgun” from the movie Aliens). Thanks to these technologies, an ordinary rifleman of the 2050s will be like the snipers of today.

2060s

  • Machines will be better at satisfyingly matching humans with fields of study, jobs, friends, romantic partners, hobbies, and daily activities than most humans can do for themselves. Machines themselves will make better friends, confidants, advisers, and even lovers than humans. Additionally, machines will be smarter and more skilled at humans in most areas of knowledge and types of work. A cultural sea change will happen, in which most humans come to trust, rely upon, defend, and love machines.
  • House robots and human-sized worker robots will be as strong, agile, and dexterous as most humans, and their batteries will be energy-dense enough to power them for most of the day. A typical American family might have multiple robot servants that physically follow around the humans each day to help with tasks. The family members will also be continuously monitored and “followed” by A.I.s embedded in their portable personal computing devices and possibly in their bodies. 
  • Cheap home delivery of groceries, robot chefs, and a vast trove of free online recipes will enable people in average households to eat restaurant-quality meals at home every day, at low cost. Predictive algorithms that can appropriately choose new meals for humans based on their known taste preferences and other factors will determine the menu, and many people will face a culinary “satisfaction paradox.”
  • Average people will have access to high-quality meals that only rich people can have today at fancy restaurants.
  • Machines will understand humans individually and at the species level better than humans understand themselves. They will have highly accurate personality models of most humans along with a comprehensive grasp of human sociology, human decision-making, human psychology, human cognitive biases, and human nature, and will pool the information to accurately predict human behavior. A nascent version of a 1:1 computer simulation of the Earth–with the human population modeled in great detail–will be created. An important application will be economic modeling and forecasting. 
  • Machines will be better teachers than most trained humans. The former will have much sharper grasps of their pupils’ individual strengths, weaknesses, interests, and learning styles, and will be able to create and grade tests in a much fairer and less biased manner than humans. Every person will have his own tutor. 
  • There will be a small, permanent human presence on the Moon.
  • If a manned Mars mission hasn’t happened yet, then there will be intense pressure to do so by the centennial of the first Moon landing (1969).
  • The worldwide number of supercentenarians–people who are at least 110 years old–will be sharply higher than it was in 2019: Their population size could be 10 times bigger or more. 
  • Advances in a variety of technologies will make it possible to cryonically freeze humans in a manner that doesn’t pulverize their tissue. However, the technology needed to safely thaw them out won’t be invented for decades. 
  • China will effectively close the technological, military, and standard of living gaps with other developed countries. Aside from the unpleasantness of being a more crowded place, life in China won’t be worse overall than life in Japan or the average European country. Importantly, China’s pollution levels will be much lower than they are today thanks to a variety of factors.
  • Small drones (mostly aerial) will have revolutionized warfare, terrorism, assassinations, and crime and will be mature technologies. An average person will be able to get a drone of some kind that can follow his orders to find and kill other people or to destroy things.
  • Countermeasures against those small drones will also have evolved, and might include defensive drones and mass surveillance networks to detect drone attacks early on. The networks would warn people via their body-worn devices of incoming drone attacks or of sightings of potentially hostile drones. The body-worn devices, such as smartphones and AR glasses, might even have their own abilities to automatically detect drones by sight and sound and to alert their wearers.
  • At least one large, manned spaceship that is designed to stay in space will exist, probably in the form of a reusable ferry that moves people between Earth and Mars.

2070s

  • There has been at least one incident where an AI, either deliberately or inadvertently, took an action that killed thousands of humans and caused billions of dollars in damage. However, the problem was contained by humans–who still control most of the world’s infrastructure and resources–and by AIs that stayed friendly to us. Our first experience with a hostile AGI or nonaligned AGI will not be cataclysmic, as it is in most sci-fi films about the topic. This success doesn’t mean our luck will last forever. 
  • 100 years after the U.S. “declared war” on cancer, there still will not be a “cure” for most types of cancer, but vaccination, early detection, treatment, and management of cancer will be vastly better, and in countries with modern healthcare systems, most cancer diagnoses will not reduce a person’s life expectancy. Consider that diabetes and AIDS were once considered “death sentences” that would invariably kill people within a few years of diagnosis, until medicines were developed that transformed them into treatable, chronic health conditions. 
  • Hospital-acquired infections will be far less of a problem than they are in 2020 thanks to better sterilization practices, mostly made possible by robots.
  • It will be technologically and financially feasible for large commercial aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by synthetic fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells. 
  • Digital or robotic companions that seem (or actually are) intelligent, funny, and loving will be easier for humans to associate with than other humans.
  • Technology will enable the creation of absolute surveillance states, where all human behavior is either constantly monitored or is inferred with high accuracy based on available information. Even a person’s innermost thoughts will be knowable thanks to technologies that monitor him or her for the slightest things like microexpressions, twitches, changes in voice tone, and eye gazes. When combined with other data regarding how the person spends their time and money, it will be possible to read their minds. The Thought Police will be a reality in some countries.  
  • Thanks to mass surveillance, and the gathering and sharing of biometric data, you’ll never be a stranger to an intelligent machine or to a human with access to the right software and devices. For example, if you go on a vacation to a new country on the other side of the world, the android waiter at a restaurant will know your name and preferences after glancing at your face.
  • Thanks to advanced lab synthesis of foods, new spices, hybrid fruits and vegetables, and meats with entirely new taste profiles will be brought into existence. Swaths of the “landscape of all possible flavors” that are currently unexplored will be.
  • Many heavily automated farms (including indoor farms and gardens on suburban plots of land) will produce food that is noticeably tastier and measurably more nutritious that most of today’s food because the advanced farms won’t need to use pesticides or to favor crop varieties that are hardy enough to endure transport over long supply chains. At low cost and for little effort, communities and individuals with small amounts of land will be able to meet their own food needs locally. People who value “natural” lifestyles might, ironically, find it most beneficial to rely on robots to make their food for them.
  • Glasses-free 3D TVs will be almost fully developed technologies with few performance limitations. 
  • A slew of weapons technologies, including self-aiming guns, highly advanced scopes, and guided bullets, will give infantrymen incredible levels of battlefield potency. Common feats will include the doubling the maximum lethal range against human targets, sniper-like accuracy from rapid fire, the ability to shoot down low-flying aircraft, to cripple vehicles from long distances with bullets through their vital components like tires and gas tanks, and the disabling of tanks by destroying their fragile external sensors or sending bullets directly down the barrels of their main guns to hit the shells loaded in them.

2100

  • Humans probably won’t be the dominant intelligent life forms on Earth.
  • Latest possible time that AGI/SAI will be invented. By this point, computer hardware will so powerful that we could do 1:1 digital simulations of human brains. If our AI still falls far short of human-like general intelligence and creativity, then it might be that only organic substrates have the necessary properties to support them.
  • The worst case scenario is that AGI/Strong AI will have not been invented yet, but thousands of different types of highly efficient, task-specific Narrow AIs will have (often coupled to robot bodies), and they will fill almost every labor niche better than human workers ever could (“Death by a Thousand Cuts” job automation scenario). Humans grow up in a world where no one has to work, and the notion of drudge work, suffering through a daily commute, and involuntarily waking up at 6:00 am five days a week is unfathomable. Every human will have machines that constantly monitor them or follow them around, and meet practically all their needs.
  • Telepresence technology will also be very advanced, allowing humans to do nearly any task remotely, from any other place in the world, in safety and comfort. This will include cognitive tasks and hands-on tasks. If any humans still have jobs, they’ll be able to work from anywhere.
  • Sophisticated narrow AI will be integrated into the telepresence technology, providing human workers with real-time assistance with tasks. An illustrative scenario would have a human in Nigeria using a VR rig to remotely control a robot that is fixing an air conditioner in England. Software programs monitoring the live video feed would recognize all of the objects in the robot’s field of view and would also understand what the human worker was trying to accomplish, and the programs would help him by visually highlighting tools or air conditioner components, or by giving him verbal advice on what to do. 
  • The use of robotic surrogate bodies for remote work will also erase any employment gaps caused by physical strength and endurance differences between the sexes and between the elderly and the young. Small men, old people, and women of average stature will be just as good at performing hard manual labor as big men. The easing of physical strain associated with work will also allow people to work past today’s retirement age. However, most serious physical work will be best left to autonomous machines.
  • The world could in many ways resemble Ray Kurzweil’s predicted Post-Singularity world. However, the improvements and changes will have accrued thanks to decades of AGI/Strong AI steady effort. Everything will not instantly change on DD/MM/2045 as Kurzweil suggests it will.
  • At least one, non-aligned AGI has done serious damage to humans, comparable in terms of deaths and economic losses to a major natural disaster or small war. 
  • The global population of autonomous robots will be within an order of magnitude of the human population. It will be very common to see robots in homes, workplaces, public spaces, and even in wilderness areas.
  • The global population of AIs and digital uploads of dead humans is also within an order of magnitude of the human population.
  • Hundreds of millions, and possibly billions, of “digitally immortal avatars” of dead humans will exist, and you will be able to interact with them through a variety of means (in FIVR, through devices like earpieces and TV screens, in the real world if the avatar takes over an android body resembling the human it was based on). 
  • A weak sort of immortality will be available thanks to self-cloning, immortal digital avatars, and perhaps mind uploading. You could clone yourself and instruct your digital avatar–which would be a machine programmed with your personality and memories–to raise the clone and ensure it developed to resemble you. Your digital avatar might have an android body or could exist in a disembodied state. 
  • It will be possible to make clones of humans using only their digital format genomic data. In other words, if you had a .txt file containing a person’s full genetic code, you could use that by itself to make a living, breathing clone. Having samples of their cells would not be necessary. 
  • The “DNA black market” that arose in the 2030s will pose an even bigger threat since it will be now possible to use DNA samples alone or their corresponding .txt files to clone a person or to produce a sperm or egg cell and, in turn, a child. Potential abuses include random people cloning or having the children of celebrities they are obsessed with, or cloning billionaires in the hopes of milking the clones for money. Important people who might be targets of such thefts will go to pains to prevent their DNA from being known. Since dead people have no rights, third parties might be able to get away with cloning or making gametes of the deceased.
  • Life expectancy escape velocity and perhaps medical immortality will be achieved. It will come not from magical, all-purpose nanomachines that fix all your body’s cells and DNA, but from a combination of technologies, including therapeutic cloning of human organs, cybernetic replacements for organs and limbs, and stem cell therapies that regenerate ageing tissues and organs inside the patient’s body. The treatments will be affordable in large part thanks to robot doctors and surgeons who work almost for free, and to medical patents expiring.
  • All other aspects of medicine and healthcare will have radically advanced. There will be vaccines and cures for almost all contagious diseases. We will be masters of human genetic engineering and know exactly how to produce people that today represent the top 1% of the human race (holistically combining IQ, genetic health, physical attractiveness, and likable/prosocial personality traits). However, the value of even a genius-IQ human will be questionable since intelligent machines will be so much smarter.
  • Augmentative cybernetics (including direct brain-to-computer links) will exist and be in common use.
  • While the traditional, “pure” races of humans will all still exist, notions of “race” and racial identity will be scrambled by the large numbers of mixed-race people who will be alive, and by widespread genetic engineering that will give people combinations of physical traits that were almost unachievable through normal human breeding. Examples might include black people with naturally blue eyes, or East Asians with naturally blonde hair. (Voluntary genetic engineering will also ensure that redheads don’t ever die out.) Some people will even have totally new genes, either synthesized in labs or borrowed from animals, that give them physical traits not found in any preexisting human race, like red eyes or purple hair.
  • Full-immersion virtual reality (FIVR) will exist wherein AI game masters constantly tailor environments, NPCs and events to suit each player’s needs and to keep them entertained. Every human will have his own virtual game universe where he’s #1. With no jobs in the real world to occupy them, it’s quite possible that a large fraction of the human race will willingly choose to live in FIVR. (Related to the satisfaction paradox) Elements of these virtual environments could be pornographic and sexual, allowing people to gratify any type of sexual fetish or urge with computer-generated scenarios and partners. 
  • More generally, AIs and humans whose creativity is turbocharged by machines will create enjoyable, consumable content (e.g. – films, TV shows, songs, artwork, jokes, new types of meals) faster than non-augmented humans can consume it. As a simple example of what this will be like, assume you have 15 hours of free time per day, that you love spending it listening to music, and each day, your favorite bands produce 16 hours worth of new songs that you really like.
  • TVs will be capable of true holography, with no visual distortions or flaws. 
  • The vast majority of unaugmented human beings will no longer be assets that can invent things and do useful work: they will be liabilities that do (almost) everything worse than intelligent machines and augmented humans. Ergo, the size of a nation’s human population will subtract from its economic and military power, and radical shifts in geopolitics are possible. Geographically large but sparsely populated countries like Russia, Australia and Canada might become very strong.
  • The transition to green energy sources will be complete, and humans will no longer be net emitters of greenhouse gases. The means will exist to start reducing global temperatures to restore the Earth to its pre-industrial state, but people will resist because they will have gotten used to the warmer climate. People living in Canada and Russia won’t want their countries to get cold again.
  • Synthetic meat will taste no different from animal meat, and will be at least as cheap to make. The raising and/or killing of animals for food will be be illegal in many countries, and trends will clearly show the practice heading for worldwide ban. 
  • Meats that are expensive and/or rare today, like Kobe beef steaks, snakes, bats, or even human flesh, will be cheap and widely available thanks to meat synthesis technology. 
  • Cheap, synthetic chicken eggs will also exist and will taste no different from natural eggs. 
  • The means to radical alter human bodies, alter memories, and alter brain structures will be available. The fundamental bases of human existence and human social dynamics will change unpredictably once differences in appearance/attractiveness, intelligence, and personality traits can be eliminated at will. Individuals won’t be defined by fixed attributes anymore. 
  • The ability to delete bad memories and to control brain activity will cure many mental illnesses. 
  • Brain implants will make “telepathy” possible between humans, machines and animals. Computers, sensors and displays will be embedded everywhere in the built environment and in nature, allowing humans with brain implants to interface with and control things around them through thought alone. This doesn’t mean traditional ways of communicating and doing things (like speaking and physically pushing buttons or turning doorknobs) will die out. 
  • Brain implants and brain surgeries will also be used to enhance IQ, change personality traits, and strengthen many types of skills. 
  • Using brain-computer interfaces, people will be able to make sophisticated songs and pieces of artwork with their thoughts alone. 
  • For aesthetic and safety reasons, the overwhelming majority of humans who have brain or body implants will only have internal implants that are invisible to other people. “Borg-like” implants that protrude from a person’s skin will be rare.
  • Technologically augmented humans and androids will have many abilities and qualities that ancient people considered “Godlike,” such as medical immortality, the ability to control objects by thought, telepathy, perfect memories, and superhuman senses.
  • Flying cars designed to carry humans could be common, but they will be flown by machines, not humans. Ground vehicles will retain many important advantages (fuel efficiency, cargo capacity, safety, noise level, and more) and won’t become obsolete. Instead of flying cars, it’s more likely that there will be millions of small, autonomous helicopters and VTOL aircraft that will cheaply ferry people through dense, national networks of helipads and airstrips. Autonomous land vehicles would take take passengers to and from the landing sites. (https://www.militantfuturist.com/why-flying-cars-never-took-off-and-probably-never-will/
  • The notion of vehicles (e.g. – cars, planes, and boats) polluting the air will be an alien concept. 
  • Advanced nanomachines could exist.
  • Vastly improved materials and routine use of very advanced computer design simulations (including simulations done in quantum computers) will mean that manufactured objects of all types will be optimally engineered in every respect, and might seem to have “magical” properties. For example, a car will be made of hundreds of different types of alloys, plastics, and glass, each optimized for a different part of the vehicle, and car recalls will never happen since the vehicles will undergo vast amounts of simulated testing in every conceivable driving condition in 1:1 virtual simulations of the real world. 
  • Design optimization and the rise of AGI consumption will virtually eliminate planned obsolescence. Products that were deliberately engineered to fail after needlessly short periods, and “new” product lines that were no better than what they replaced, but had non-interchangeable part sizes would be exposed for what they were, and AGI consumers would refuse to buy them. Production will become much more efficient and far fewer things will be thrown out. 
  • Relatively cheap interplanetary travel (probably just to Mars and to space stations and moons that are about as far as Mars) will exist.
  • Androids that are outwardly indistinguishable from humans will exist, and humans will hold no advantages over them (e.g. – physical dexterity, fine motor control, appropriateness of facial expressions, capacity for creative thought). Some androids will also be indistinguishable to the touch, meaning they will seem to be made of supple flesh and will be the same temperature as human bodies. However, their body parts will not be organic.
  • Sex robots will be indistinguishable from humans.
  • Android assassins like the T-800s from the Terminator films will exist. They will look identical to humans, will be able to blend into human populations, track down targets, and kill or abduct them. As in the films, these androids will be stronger, more durable, and more skilled with weapons than we are.
  • Some robots will carry drones meant to detach from them to autonomously perform specific tasks and then return. Some will also be able to detach their body parts (like a hand) to do the same. 
  • Robots that are outwardly identical to sci-fi and fantasy characters and extinct animals, like grey aliens, elves, fairies, giant house cats, and dinosaurs, will exist and will occasionally be seen in public. Some weird person will want their robot butler to look like bigfoot, and at least one hobbyist will build a life-sized robotic dragon that can fly and spit fire.
    https://www.mentalfloss.com/article/503967/could-game-throness-dragons-really-fly-we-asked-some-experts 
  • Humans interested in extreme body modifications will be able to surgically alter themselves to look like many of those creatures.
  • Machines that are outwardly indistinguishable from animals will also exist, and they will have surveillance and military applications. 
  • Drones, miniaturized smart weapons, and AIs will dominate warfare, from the top level of national strategy down to the simplest act of combat. The world’s strongest military could, with conventional weapons alone, destroy most of the world’s human population in a short period of time. 
  • It will be possible for one country to build an army of killer robots that equals the size of the whole human population. 
  • The construction and daily operation of prisons will have been fully automated, lowering the monetary costs of incarceration. As such, state prosecutors and judges will no longer feel pressure to let accused criminals have plea deals or to give them shorter prison sentences to ease the burdens of prison overcrowding and high overhead costs. 
  • The term “millionaire” will fall out of use in the U.S. and other Western countries since inflation will have rendered $1 million USD only as valuable as $90,000 USD was in 2019 (assuming a constant inflation rate of 3.0%).
  • There will still be major wealth and income inequality across the human race. However, wealth redistribution, better government services, advances in industrial productivity, and better technologies will ensure that even people in the bottom 1% have all their basic and intermediate life needs meet. In many ways, the poor people of 2100 will have better lives than the rich people of 2020.

2101 – 2200 AD

  • Humans will definitely stop being the dominant intelligent life forms on Earth. 
  • Many “humans” will be heavily augmented through genetic engineering, other forms of bioengineering, and cybernetics. People who outwardly look like the normal humans of today might actually have extensive internal modifications that give them superhuman abilities. Non-augmented, entirely “natural” humans like people in 2019 will be looked down upon in the same way you might today look at a very low IQ person with sensory impairments. Being forced by your biology to incapacitate yourself for 1/3 of each day to sleep will be tantamount to having a medical disability. 
  • Due to a reduced or nonexistent need for sleep among intelligent machines and augmented humans and to the increased interconnectedness of the planet, global time zones will become much less relevant. It will be common for machines, humans, businesses, and groups to use the same clock–probably Coordinated Universal Time (UTC)–and for activity to proceed on a 24/7 basis, with little regard of Earth’s day/night cycle. 
  • Physical disabilities and defects of appearance that cause untold anguish to people in 2019 will be easily and cheaply fixable. For example, male-pattern baldness and obesity will be completely ameliorated with minor medical interventions like pills or outpatient surgery. Missing or deformed limbs will be easily replaced, all types of plastic surgery (including sex reassignment) will be vastly better and cheaper than today, and spinal cord damage will be totally repairable. The global “obesity epidemic” will disappear. Transsexual people will be able to seamlessly alter their bodies to conform with their preferred genders, or to alter their brains so their gender identities conform with the bodies they were born with. 
  • These advanced body modification abilities will partly be thanks to medical micro- and nanomachines that will be able to travel through a person’s bloodstream and flesh, and to precisely kill small groups of cells (including bone) or stimulate cell proliferation. Over the course of a few sessions, a person could finely sculpt their nose, cheeks or private parts to match whatever they wanted. Genetic engineering for beauty will probably become less important as a result. 
  • All sleep disorders will be curable thanks to cybernetics that can use electrical pulses to quickly initiate sleep states in human brains. The same kinds of technologies will also reduce or eliminate the need for humans to sleep, and for people to control their dreams. 
  • Brain-computer interfaces will let people control, pre-program, and, to a limited extent, record their dreams. 
  • Through electrical signaling and chemical releases, the brain implants will be able to induce any type of mental or emotional state. This will include altered states of consciousness, like lucid dreaming, meditation, or intoxication (as a result, mind-altering drugs could become obsolete). A person might have to go through a “calibration period” where the implants would monitor and record their brain activity while they experienced different things, and then, the user would experiment with the implant to see how well it could induce the recorded brain states. Through a process of guided trial and error, they would become masters of their own minds. This ability would make human life richer and more productive, as people could have valuable experiences during portions of the day when they would otherwise be bored or “switched off,” and to even do useful problem-solving tasks in their sleep. Alternatively, the ability to induce feelings of blinding pleasure could lead to a major addiction problem among humans, and widen the productivity/usefulness gap between our species and intelligent machines.
  • Direct brain-to-computer interfaces and other advanced technologies will let humans enter virtual reality worlds that seem no different from the real world (the “Matrix scenario”), and to remotely control robot bodies located anywhere in the real world, with fully lifelike levels of sensory richness and fusion. Able to control perfect robot bodies of any design in the real world, and to take on any form in virtual worlds, some humans will have no use for real, fixed-form bodies, and will dispense with them, instead existing as “brains in jars.”  
  • Some “humans” will lack fixed, corporeal forms; they will be able to extensively modify their original bodies or to switch bodies at will. A person could take the form of something nonhuman, like a terrestrial squid. They exist as disembodied, cybernetically enhanced brains in life support containers that can assume control over any physical bodies they want, either by remotely controlling them through the internet, or by physically inserting their life support containers into matching slots in the bodies.
  • The line between “biological” and “synthetic” will blur as artificial objects take on some of the properties of organic matter and as they are integrated into originally biological life forms. Examples include humans who have artificial limbs and organs that are soft, supple, and interface with their nervous systems as well as natural limbs and organs; humans whose bodies contain special lines of cells meant to save and store non-genomic data as DNA; cybernetic implants that are soft and capable of growing inside a person’s body; machines that can heal their own bodies; and microscopic, self-reproducing machines that can thrive indefinitely in human bodies, in wild animals, or in other life forms and even be transferred between individuals, like benign diseases.
  • Brain implants will let humans merge minds with each other, AIs and animals. 
  • People will “download” memories and sensory experiences for pleasure and self-betterment. Some of the content will be recordings of actual experiences, while other content will be fully synthetic. 
  • Significant numbers of people will know what death is like, either because they died and were resuscitated with advanced medical technology, because they were revived from cryostasis, or because they downloaded a memory of someone else dying.
  • Almost all of today’s diseases will be cured.
  • The means to halt and reverse human aging will be created. The human population will come to be dominated by people who are eternally young and beautiful. 
  • Augmented females will have the natural ability to suspend and control their monthly fertility cycles.
  • Humans and machines will be immortal. Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who lived their lives knowing they were doomed to deteriorate and die. Today’s humans will be seen as deeply flawed and limited creatures, at the mercy of their instincts and small brains, and condemned to deal with random genetic flaws and chronic health problems they were randomly given at birth. 
  • Extreme longevity, better reproductive technologies that eliminate the need for a human partner to have children, and robots that do domestic work and provide companionship (including sex) will weaken the institution of marriage more than any time in human history. An indefinite lifetime of monogamy will be impossible for most people to commit to. 
  • At reasonable cost, it will be possible for women to create healthy, genetically related children at any point in their lives, and without using the 2019-era, pre-menopausal egg freezing technique. For example, a 90-year-old, menopausal woman will be able to use reproductive technologies to make a baby that shares 50% of her DNA. 
  • Opposite-sex human clones will exist. Such a clone would share 22-1/2 of their 23 chromosome pairs with their “original.” Only the final sex chromosome, which would be either a “Y” or a second “X”, would differ.  
  • Immortality, the automation of work, and widespread material abundance will completely transform lifestyles. With eternity to look forward to, people won’t feel pressured to get as rich as possible as quickly as possible. As stated, marriage will no longer be viewed as a lifetime commitment, and serial monogamy will probably become the norm. Relationships between parents and offspring will change as longevity erases the disparities in generational outlook and maturity that traditionally characterize parent-child interpersonal dynamics (e.g. – 300-year-old dad doesn’t know any better than his 270-year-old son). The “factory model” of public education–defined by conformity, rote memorization, frequent intelligence testing, and curricula structured to serve the needs of the job market–will disappear. The process of education will be custom-tailored to each person in terms of content, pacing, and style of instruction. Students will be much freer to explore subjects that interest them and to pursue those that best match their talents and interests. 
  • Radically extended human lifespans mean it will become much more common to have great-grandparents around. A cure for aging will also lead to families where members separated in age by many decades look the same age and have the same health. Additionally, older family members won’t be burdensome since they will be healthy.
  • The human population might start growing again thanks to medical immortality, to advanced fertility technologies including artificial wombs and cloning, and to robots that help raise children, reducing the workload for human parents. The human race won’t die out thanks to persistently low birthrates.
  • Thanks to radical genetic engineering, there will be “human-looking,” biological people among us that don’t belong to our species, Homo sapiens. Examples could include engineered people who have 48 chromosomes instead of 46, people whose genomes have been shortened thanks to the deletion of junk DNA, or people who look outwardly human but who have radically different genes within their 46 chromosomes, so they have different numbers or arrangements of internal organs (like two hearts), or even new types of internal organs, such as bird-like lung . Such people wouldn’t be able to naturally breed with Homo sapiens, and would belong to new hominid species. 
  • Extinct species for which we have DNA samples (ex – from passenger pigeons on display in a museum) will be “resurrected” using genetic technology.
  • The global mass surveillance network will encompass unpopulated areas and wilderness areas, protecting animals from poaching. Extinctions of large, wild animals will stop.
  • Large animal attacks on humans will become incredibly rare thanks to technologies like the global mass surveillance network foreseeing and preventing hostile encounters. Entire populations of large animal species could also have permanent tracking devices.
  • The technology for safely thawing humans out of cryostasis and returning them to good health will be created. 
  • Suspended animation will become a viable alternative to suicide. Miserable people could “put themselves under,” with instructions to not be revived until the ill circumstances that tormented them had disappeared or until cures for their mental and medical problems were found. 
  • A sort of “time travel” will become possible thanks to technology. Suspended animation will let people turn off their consciousnesses until any arbitrary date in the future. From their perspective, no time will have elapsed between being frozen and being thawed out, even if hundreds of years actually passed between those two events, meaning the suspended animation machine will subjectively be no different from a time machine to them. FIVR paired with data from the global surveillance networks will let people enter highly accurate computer simulations of the past. The data will come from sources like old maps, photos, videos, and the digital avatars of people, living and dead. The computers simulations of past eras will get less accurate as the dates get more distant and the data scarcer.
  • It will be possible to upload human minds to computers. The uploads will not share the same consciousness as their human progenitors, and will be thought of as “copies.” Mind uploads will be much more sophisticated than the digitally immortal avatars that will come into existence in the 2030s.
  • Different types of AGIs with fundamentally different mental architectures will exist. For example, some AGIs will be computer simulations of real human brains, while others will have totally alien inner workings. Just as a jetpack and a helicopter enable flight through totally different approaches, so will different types of AGIs be capable of intelligent thought. 
  • Gold, silver, and many other “precious metals” will be worth far less than today, adjusting for inflation, because better ways of extracting (including from seawater) them will have been developed. Space mining might also massively boost supplies of the metals, depressing prices. Diamonds will be nearly worthless thanks to better techniques for making them artificially. 
  • The first non-token quantities of minerals derived from asteroid mining will be delivered to the Earth’s surface. (Finding an asteroid that contains valuable minerals, altering its orbit to bring it closer to Earth, and then waiting for it to get here will take decades. No one will become a trillionaire from asteroid mining until well into the 22nd century.)
  • Synthetic life forms will colonize parts of the world uninhabitable to humans, like mountaintops, oceans (both on the surface and under it), and maybe even underground regions. Intelligent and semi-intelligent machines will be common sights, even in remote areas.
  • Intelligent life from Earth will colonize the entire Solar System, all dangerous space objects in our System will be found, the means to deflect or destroy them will be created, and intelligent machines will redesign themselves to be immune to the effects of radiation, solar flares, gamma rays, and EMP. As such, natural phenomena (including global warming) will no longer threaten the existence of civilization.  Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who were confined to Earth and at the mercy of planet-killing disasters. 
  • “End of the World” prophecies will become far less relevant since civilization will have spread beyond Earth and could be indefinitely self-sustaining even if Earth were destroyed. Some conspiracy theorists and religious people would deal with this by moving on to belief in “End of the Solar System” prophecies, but these will be based on extremely tenuous reasoning. 
  • The vast majority of intelligent life forms outside of Earth will be nonhuman. 
  • A self-sustaining, off-world industrial base will be created.
  • It will be possible to safely smoke cigarettes in more advanced types of space ships. 
  • Spy satellites with lenses big enough to read license plates and discern facial features will be in Earth orbit. 
  • Space probes made in our Solar System and traveling at sub-light speeds will reach nearby stars.
  • All of the useful knowledge and great works of art that our civilization has produced or discovered could fit into an advanced memory storage device the size of a thumb drive. It will be possible to pair this with something like a self-replicating Von Neumann Probe, creating small, long-lived machines that would know how to rebuild something exactly like our civilization from scratch. Among other data, they would have files on how to build intelligent machines and cloning labs, and files containing the genomes and mind uploads of billions of unique humans and non-human organisms. Copies of existing beings and of long-dead beings could be “manufactured” anywhere, and loaded with the personality traits and memories of their predecessors. Such machines could be distributed throughout our Solar System as an “insurance policy” against our extinction, or sent to other star systems to seed them with life. Some of the probes could also be hidden in remote, protected locations on Earth.
  • We will find out whether alien life exists on Mars and the other celestial bodies in our Solar System. 
  • Intelligent machines will get strong enough to destroy the human race, though it’s impossible to assign odds to whether they’ll choose to do so.
  • If the “Zoo Hypothesis” is right, and if intelligent aliens have decided not to talk to humans until we’ve reached a high level of intellect, ethics, and culture, then the machine-dominated civilization that will exist on Earth this century might be advanced enough to meet their standards. Uncontrollable emotions and impulses, illogical thinking, tribalism, self-destructive behavior, and fear of the unknown will no longer govern individual and group behavior. Aliens could reveal their existence knowing it wouldn’t cause pandemonium. 
  • The government will no longer be synonymous with slowness and incompetence since all bureaucrats will be replaced by machines.
  • Technology will be seamlessly fused with humans, other biological organisms, and the environment itself.  
  • It will be cheaper and more energy-efficient to grow or synthesize almost all types of food in labs or factories than to grow and harvest it in traditional, open-air farms. Shielded from the weather and pests and not dependent on soil quality, the amounts and prices of foods will be highly consistent over time, and worries about farmland muscling out or polluting natural ecosystems will vanish. Animals will no longer be raised for food. Not only will this benefit animals, but it will benefit humans since it will eliminate a a major source of communicable disease (e.g. – new influenza strains originate in farm animals and, thanks to close contact with human farmers, evolve to infect people thanks to a process called “zoonosis”).
  • Additionally, the means will exist to cheaply and artificially produce non-edible organic products, like wool and wood, in industrial quantities. This means anyone will be able to buy animal products that are very expensive today, like snakeskin boots or bear rugs. Unlimited quantities of perfectly simulated animal products that have useful properties, like pillow feathers (softness) or high-grade wool (heat insulation), will be available, and no animals will need to be harmed to make them. This will greatly help endangered species that are poached for their parts, like elephants killed for their ivory tusks. Lab-synthesized wood that is superior to “old-growth” timber will also exist.
  • The ability to cheaply make large quantities of organic products will lead to the creation of bizarre objects that no one conceived of before, like vehicle frames made of single pieces of bone.
  • A global network of sensors and drones will identify and track every non-microscopic species on the planet. Cryptids like “bigfoot” and the “Loch Ness Monster” will be definitively proven to not exist. The monitoring network will also make it possible to get highly accurate, real-time counts of entire species populations. Mass gathering of DNA samples–either taken directly from organisms or from biological residue they leave behind–will also allow the full genetic diversity of all non-microscopic species to be known. 
  • That same network of sensors and machines will let us monitor the health of all the planet’s ecosystems and to intervene to protect any species. Interventions could include mass, painless sterilizations of species that are throwing the local ecology out of balance, mass vaccinations of species suffering through disease epidemics, reintroductions of extinct species, or widescale genetic engineering of a species. 
  • The technology and means to implement David Pearce’s global “benign stewardship” of nonhuman organic life will become available.  (https://youtu.be/KDZ3MtC5Et8) After millennia of inflicting damage and pain to the environment and other species, humanity will have a chance to inaugurate an era free of suffering.
  • The means will exist to harmlessly control animal populations, predation, and to greatly ease animal suffering. 
  • The same medical treatments that radically extend human lifespans will also be used on pets. Fifty-year-old dogs and cloned cats that are the sixth in their lineage will exist. 
  • The mass surveillance network will also look skyward and see all anomalous atmospheric phenomena and UFOs.
  • Robots will clean up all of the garbage created in human history. 
  • Every significant archaeological site will be excavated and every shipwreck found. There will be no work left for people in the antiquities. 
  • Dynamic traffic lane reversal will become the default for all major roadways, sharply increasing road capacity without compromising safety. Autonomous cars that can instantly adapt to changes in traffic direction and that can easily avoid hitting each other even at high speeds will enable the transformation.
  • The Imperial system of weights and measures will fall out of use worldwide. Intelligent machines and posthumans will be able to switch to Metric without a problem. The same nimbleness of mind might also let them break from the ingrained traditions created by past humans and adopt other new standards, like new alphabets, numerals, and languages.