The hideous East German helmet has an interesting history. It was designed during WWII as a replacement for the iconic M35 “Stahlhelm,” and tests showed it was stronger yet cheaper to make. In spite of that, Hitler rejected the adoption of the new helmets because they lacked the distinctive “German” appearance that the world had come to know and love. After the War, the Soviets made the new East German Army divest itself of weapons and equipment from the Nazi era, which meant the Stahlhelm was out. Luckily, the East Germans found the data sheets for the ugly helmet Hitler didn’t like, so they made it. https://equipment.fandom.com/wiki/Stahlhelm_M1945
“If the Japanese had sunk every ship at Pearl Harbor and destroyed every plane in the Hawaiian Islands, we still would have been in a situation where our economy was 10 times larger than theirs. We had already begun building this enormous new fleet, and I believe the result — it might have taken us longer to win the war — but there’s no doubt that the (United States) would have reacted much like it did — (a) unified sense of rage and purpose. and as soon as that happened, I think Japan was finished.” https://www.joplinglobe.com/news/local_news/acclaimed-historian-says-japan-lost-the-war-on-dec-7-1941/article_59862a68-52d4-11ec-8410-c31d1abee0fb.html
The “Bailey Bridge” was a modular bridge invented in WWII. Crews could assemble it in the field by lining up the components and hammering thick, metal pegs through their corresponding holes. They also used permanent clamps to hold the parts together. I think we should assemble modular houses like this. After the concrete foundation was poured and dried, several 18-wheeler trucks and a small crane would arrive at the site. Each truck would carry a different, box-like section of the house. The crane would stack them in the right order, and construction workers would do the careful work of lining up the holes on the edges of each section’s frame with its neighbors, and then hammer pegs through the holes to secure them. All the “framing” work could be done in a day. The different components might even come with plumbing and electric wiring, only making it necessary for the workers to join the short gaps between each section. https://www.youtube.com/watch?v=vaNOuVgwPos
Here’s a fascinating analysis of how the Allies gained the upper hand against the Axis Powers in 1942 with weapons production and readiness. https://www.youtube.com/watch?v=jKCScYZoEj4
The Soviet T-55 tank began production in 1958, and the vehicles are still being remanufactured, upgraded and traded. Though much worse than modern main battle tanks, upgraded T-55s are still effective against lighter armored vehicles and against enemies that lack armor. Pakistan just bought them for such a role. https://www.youtube.com/watch?v=-7vKHiygopk
‘A solar balloon is a balloon that gains buoyancy when the air inside is heated by solar radiation, usually with the help of black or dark balloon material. The heated air inside the solar balloon expands and has lower density than the surrounding air. As such, a solar balloon is similar to a hot air balloon.’ https://en.wikipedia.org/wiki/Solar_balloon
Whether life exists on Venus, it’s interesting that our scientists can conceive of life forms that could theoretically survive there. We could someday synthesize such microbes in cloning labs on Earth, and then send them to Venus on space rockets to seed that planet with life (some people think aliens did that to Earth billions of years ago). I don’t think we should do it yet, though. We should build stations orbiting Venus to slowly siphon its thick atmosphere into space for whatever industrial uses we have, until the atmosphere is about as thick as Earth’s. At that point, we could seed the planet with a greater abundance of engineered life forms, and of greater biological complexity. https://news.mit.edu/2021/habitable-venus-clouds-acid-neutralizing-1220
The “greater male variability hypothesis” says that human males are more genetically diverse than females because males have only one “X” chromosome whereas females have two. Any recessive traits and/or extreme traits that may be on a person’s X chromosome are expressed in males, but tend to be muffled in females because of the effect of the second X chromosome. A growing body of evidence from human medical studies supports the Hypothesis, and now, it seems the same effect applies to chimpanzees. https://royalsocietypublishing.org/doi/full/10.1098/rspb.2019.2858
“Intellectual disability,” formerly termed “mental retardation,” is a condition where a person’s IQ is lower than 70. It has many different causes, including the inheritance of genes from naturally low-IQ parents, totally random genetic mutations in the womb (Down Syndrome), brain damage during difficult births (Cerebral Palsy), and severe neglect/abuse during early childhood. As a result, while intellectually disabled adults might seem the same, they can have low IQs for diverse reasons. This study filtered out the intellectually disabled people who were so due to random genetic mutations, birthing accidents, and early childhood trauma. It determined that low IQ is very heritable, just as other studies have shown high IQ is very heritable. Also, an unusually high number of genes coding for IQ are located on the X-chromosome, which explains why the population “bell curve” for IQ is narrower for women than it is for men. Men are likelier to be intellectually disabled and also likelier to be geniuses than women. https://onlinelibrary.wiley.com/doi/abs/10.1111/jcpp.13560
‘We found evidence that most countertop microwaves sold in the US are manufactured by just one company, Midea. We confirmed with Midea that it makes and sells Toshiba, Comfee, and Black+Decker ovens. We’re also confident that GE, Whirlpool, Sharp, Breville, Insignia, Magic Chef, Hamilton Beach, and others also sell microwaves that were originally built and probably designed in large part by Midea, though all parties that we contacted declined to comment.’ https://www.nytimes.com/wirecutter/reviews/best-microwave/#most-microwaves-come-from-the-same-factory
In August of 2020, Bill Gates predicted that “for the rich world, we should largely be able to end [the COVID-19 epidemic] by the end of 2021, and for the world at large by the end of 2022.” At least in the U.S., the prediction would have been right had people continued getting vaccinated at the rate they were during April 2021. https://www.wired.com/story/bill-gates-on-covid-most-us-tests-are-completely-garbage/
During WWII, the ever-frugal and innovative Germans built tanks out of spare parts they captured from other armies. They found ways to wring utility out of obsolete equipment, both foreign- and domestically made. The “Marder” armored vehicles were outstanding examples of this. https://www.youtube.com/watch?v=LyVyFGLX1TY
This video shows the differences between how high explosive squash-head (HESH) and high explosive anti-tank (HEAT) weapons work. Note that HESH rounds work well when they flatten out against the surface of a tank before exploding, like a spherical glob of mud falling onto a hard floor and splattering into a pancake. Conversely, HEAT rounds work best when they explode at the instant they touch the surface of a tank, like a round, porcelain piggy bank being dropped and shattering just as it hits the ground. https://youtu.be/Uhz3w8-PSl8
There are such things as bullets that explode on impact. They’re meant to penetrate heavy metal/ceramic body armor and light vehicle armor. https://youtu.be/5Dqg5k_kdPw
The first patent for a percussion-cap musket was patented in England in 1807. Sportsmen there and in America soon discovered they were more reliable than their flintlock muskets, and adopted them in significant numbers. However, it wasn’t until 1834 that the British Army considered the new weapons for use. The tests showed that the percussion cap muskets were 26 times more reliable, and the British quickly adopted the new guns. Like Mikhail Kalashnikov 100 years later, the inventor of the revolutionary new weapon, Alexander Forsythe, received no compensation. https://weaponsandwarfare.com/british-army-1820-45/
Someone tried to kill Iraq’s prime minister by flying an explosive-laden drone into his house and detonating it. Recall my prediction that, before 2030, “Drones will be used in an attempted or successful assassination of at least one major world leader.” This man wasn’t high-profile enough to satisfy my prediction. https://www.bbc.com/news/world-middle-east-59195399
The U.S. military’s experimental “Gremlin” drones, which un-dock in midair from larger “mothership” planes, perform missions, and then fly back to the motherships and dock with them, are getting more refined. https://youtu.be/H4T6Vr4a1hY
In the first attack of its kind, a quadcopter drone was used in an attempt to disable a power station in the U.S. It failed, and the police found the drone. The person or people responsible were careful to remove identifying information from the machine, and remain unknown. In the future, drones and narrow AI will untether each country’s military strength from the size of its human population. https://www.thedrive.com/the-war-zone/43015/likely-drone-attack-on-u-s-power-grid-revealed-in-new-intelligence-report
“Nitinol” is a remarkable alloy, and objects made from it “remember” their original shapes and revert to them, even after being bent or stretched into something else. https://www.youtube.com/watch?v=wI-qAxKJoSU
Before 1856, it was really rare to see purple-colored objects because purple dye was very expensive to make (snails had to be collected and boiled). But that year, a German chemist discovered a way to synthesize it from coal tar at very low cost. Almost overnight, every snail-boiling business went bankrupt, and by 1859, a fashion fad of wearing purple clothes swept the U.S. and Western Europe. It’s a perfect example of how technology brings things that were once the exclusive domain of the rich to everyone else.
There is actually an upper limit to how loud sounds can be. “For a sound of 194 decibels, the trough of the fluctuation would just touch zero, which is the vacuum pressure. It can’t go any lower than that, so a sustained sound greater than 194 decibels is not possible.” https://www.quora.com/How-do-we-know-that-194-decibels-is-the-loudest-sound-possible
This website catalogs all the futuristic technologies mention in science fiction books, along with the years when they are supposed to be (or were supposed to have been) real. http://technovelgy.com/
Economist Tyler Cowen predicts that greater use of telework will expose most American jobs having to do with computer coding and IT to cheaper foreign competition (“teleshock”). Many formerly secure and well-paying jobs will vanish. Conversely, some types of culture-specific and location-dependent jobs will remain secure. https://marginalrevolution.com/marginalrevolution/2021/11/the-teleshock.html
Coal and crude oil can be turned into an edible, fat-rich substance similar to margarine. This study examines the feasibility of feeding the population with it during a global calamity that blocks out the sun for several years (ex – nuclear winter, megavolcano eruption, asteroid strike). https://www.sciencedirect.com/science/article/pii/S0263876221004275
NASA had further plans for the Apollo Program and the Saturn V rockets, including the construction of a Moon base, and a manned Venus flyby. https://www.youtube.com/watch?v=f4CTI5GDz98
Thanks to a small computer chip implanted in his brain, a partially paralyzed man was able to use his thoughts to “[achieve] typing speeds of 90 characters per minute with 94.1% raw accuracy online, and greater than 99% accuracy offline with a general-purpose autocorrect.” https://www.nature.com/articles/s41586-021-03506-2
People can make themselves taller by getting surgery where the legs are broken, the two halves are pulled apart a tiny amount, and then the body is allowed to heal by slowly filling in the gap with new bone. A woman with dwarfism underwent the procedures several times over four, agonizing years, to increase her height from 3′ 9″ to 4′ 11″. She even did it to her arms to keep them proportionate with her elongating body. https://www.thesun.co.uk/news/16645445/underwent-years-agonising-surgery-stretch-my-bone/
In Britain, mass vaccination of girls and young women with the HPV vaccine has caused an 87% drop in cervical cancer cases since 2008. https://www.bbc.com/news/health-59148620
This article is over a year old. Not bad: ‘This is the end of the coronavirus pandemic. And this is how it could happen in the United States: By November 2021, most Americans have received two doses of a vaccine that, while not gloriously effective, fights the disease in more cases than not. Meanwhile, Americans continue to wear masks and avoid large gatherings, and the Covid-19 numbers drop steadily after a series of surges earlier in the year. Eventually, as more and more Americans develop immunity through exposure and vaccination, and as treatments become more effective, Covid-19 recedes into the swarm of ordinary illnesses Americans get every winter.’ https://www.politico.com/news/magazine/2020/09/25/how-covid-19-pandemic-ends-421122
Ivermectin does little or nothing against the COVID-19 virus. The medical studies that showed it reducing deaths were done in tropical countries where worm parasite infections are common. This means ivermectin saves the lives of some COVID-19 infectees by killing off their parasites, which are weakening their immune systems just enough to let COVID-19 to kill them. There is no controversy over ivermectin’s value as an antiparasite drug. https://astralcodexten.substack.com/p/ivermectin-much-more-than-you-wanted
China has converted several of its decommissioned 1950s-era fighter planes into drones. In a conflict, they would be used sacrificially for reconnaissance and to distract the enemy. I think “drone upgrade kits” could be used to breathe new life into all sorts of obsolete weapons, though they wouldn’t be as effective as new weapons designed from the outset to be crewless. I’m reminded of the German WWII practice of using captured enemy weapons, and even continuing the manufacture the better ones after taking over the countries where their factories were located. If the U.S. Army captured a bunch of Soviet- or Chinese-made tanks in a future war, the old excuse about how we can’t use them because we don’t know how they work or how to maintain them would disappear. The robots would figure it out. https://www.defensenews.com/global/asia-pacific/2021/10/20/china-shows-off-drones-recycled-from-soviet-era-fighter-jets/
A really bad but plausible war scenario would involve Taiwan surrendering after a Chinese invasion faster than the U.S. can move large numbers of troops there to fight. If Taiwan calls it quits after barely putting up a fight, it will be very hard for politicians over here to justify a costly war of liberation for apparent cowards who didn’t value their own freedom enough to fight hard. https://www.wsj.com/articles/taiwan-military-readiness-china-threat-us-defense-11635174187
‘Currently, we produce ∼1021 digital bits of information annually on Earth. Assuming a 20% annual growth rate, we estimate that after ∼350 years from now, the number of bits produced will exceed the number of all atoms on Earth, ∼1050. After ∼300 years, the power required to sustain this digital production will exceed 18.5 × 1015 W, i.e., the total planetary power consumption today, and after ∼500 years from now, the digital content will account for more than half Earth’s mass, according to the mass-energy–information equivalence principle.’ https://aip.scitation.org/doi/10.1063/5.0019941
The “International Phonetic Alphabet” is an alphabet containing one letter for every sound that exists in every human language. Languages as diverse as English, Mandarin and Arabic can all be written IPA, with no distortion. The IPA even has symbols representing the “click” sounds that some tribal African languages have. If everyone in the world used the IPA, it would make it easier to learn other languages. https://www.youtube.com/watch?v=XTzkT3j9pHI
‘Yet despite the complexity of birdsong and whale song, animals don’t seem to have that much to say to each other. “Stay away from my territory,” “Beware of the leopard” and “Come mate with me” sum up most of the messages we expect from animals. They could combine their sounds in almost infinitely varied ways, but they use just the tiniest fraction of these possibilities.’ https://www.wsj.com/articles/alien-languages-may-not-be-entirely-alien-to-us-11616817660
The “Waddington Effect” says that too much maintenance on a machine actually reduces the machine’s reliability because of the nonzero chances that workers will accidentally damage the machine during maintenance, or that a newly installed part will be defective. http://livingstingy.blogspot.com/2011/03/waddington-effect.html
‘What does ultraviolet look like? Prof Stark possesses UV vision because he is aphakic in one eye and, with Professor Karel Tan, has published research on the nearest visible equivalent. His conclusion is that it looks whitish blue or, for some wavelengths, a whitish violet. This appears to be because the three types of colour receptor (red, green and blue) have similar sensitivity to ultraviolet, so it comes out as a mixture of all three – basically white, but slightly blue because the blue sensors are somewhat better at picking up UV.’ https://www.theguardian.com/science/2002/may/30/medicalscience.research
The peer-review process is good at weeding out the worst papers, but that’s it. The “quality” ratings that peer reviewers assign to published papers are highly subjective, and there’s little positive correlation between a published paper’s quality score and its eventual “impact” score, which refers to how many times other academics cite the paper in their own work. A large fraction of papers that can only get published in second-tier journals actually belong in top-tier journals, and vice versa. http://arxiv.org/abs/2109.09774
‘During a routine analysis of biological samples from two California condors in the San Diego Zoo Wildlife Alliance’s managed breeding program, scientists confirmed that each condor chick was genetically related to the respective female condor (dam) that laid the egg from which it hatched. However, in a surprising twist, they found that neither bird was genetically related to a male—meaning both chicks were biologically fatherless; and accounted for the first two instances of asexual reproduction, or parthenogenesis, to be confirmed in the California condor species.’ https://stories.sandiegozoo.org/2021/10/28/san-diego-zoo-wildlife-alliance-conservation-scientists-report-first-confirmed-hatchings-of-two-california-condor-chicks-from-unfertilized-eggs/
Facebook is training computers to recognize the tasks people are doing, in the hopes that the algorithms can someday be installed in augmented reality glasses. https://www.bbc.com/news/technology-58896551
Turboprops and piston plane engines look the same on the outside, but are completely different on the inside: A turboprop engine is actually a jet engine that spins an externally mounted propeller. A piston engine, on the other hand, is fundamentally the same thing as a car engine, though the components are usually laid out differently from their analogs in cars. https://youtu.be/CTsBi6WOGWQ
1924 U.S. government report “Jet Propulsion for Airplanes”: ‘But to return from such speculations to the quantitative results of the computations, there does not appear to be, at present, any prospect whatever that jet propulsion of the sort here considered will ever be of practical value, even for military purposes.’ https://ntrs.nasa.gov/api/citations/19930091225/downloads/19930091225.pdf
Genetically engineering a bacterium to fix atmospheric nitrogen into biomolecules, and then splicing the bacterium into crop cells, where they would become as ubiquitous as organelles like mitochondria and chloroplasts, would massively boost farm output and cut the need for nitrogen fertilizers. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1331173&HistoricalAwards=false
Unsurprisingly, genetics strongly influence how much people benefit from exercise. There really are people who can get six-pack abs from just a little diet and exercise, and others who can’t get them no matter how hard they try. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249501
‘More generally, one can see top chefs producing recipes that are then scaled not just to restaurants but also to home robot preparation services. Meals would be produced by a subscription service (“We have 10,000 recipes from the greatest chefs on every continent.”). Restaurants would compete even more on ambience.’ https://marginalrevolution.com/marginalrevolution/2021/10/the-new-top-chef.html
This paper estimates that a 1 kg, 1 liter in volume computer made of the most powerful computer chips allowed by the laws of physics would do 1051 operations per second and would have a memory capacity of 1031 bits. Even if those theoretical maxima of performance can’t be attained, and future computer engineers hit a “practical peak” that is several orders of magnitude lower than those figures, the resulting machine would be incomprehensibly powerful. https://arxiv.org/pdf/quant-ph/9908043.pdf
‘For the entire history of computing, our calculating machines have operated in a way that causes the intentional loss of some information (it’s destructively overwritten) in the process of performing computations. But for several decades now, we have known that it’s possible in principle to carry out any desired computation without losing information—that is, in such a way that the computation could always be reversed to recover its earlier state. This idea of reversible computing goes to the very heart of thermodynamics and information theory, and indeed it is the only possible way within the laws of physics that we might be able to keep improving the cost and energy efficiency of general-purpose computing far into the future.’ https://spectrum.ieee.org/the-future-of-computing-depends-on-making-it-reversible
In a recent study, 80% of people with type 2 diabetes were able to put their disorders into remission simply by losing weight. The higher obesity rate and the concomitantly higher rates of obesity-related illnesses like diabetes explain much of the reason why the U.S. spends more on healthcare than other rich countries and has worse public health metrics. https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.14395
A new malaria vaccine has been approved by the WHO for use in Africa. It lowers the odds of infection by about 40% and is cheap to make. https://www.bbc.com/news/health-58810551
The FDA has approved an e-cigarette as an aide for people who want to stop smoking regular cigarettes. It is the latest confirmation that vaping is less harmful to health than smoking. https://www.npr.org/2021/10/12/1045408023/fda-e-cigarettes
In 2004, ten years after the events of Terminator 2, Sarah Connor is long dead from cancer, and John Connor–once fated to be the savior of humanity–is an impoverished drifter in southern California. However, he is contented with the knowledge that he helped prevent the rise of the malevolent artificial intelligence (AI) called “Skynet,” which would have otherwise destroyed most of the human race in 1997 with a massive nuclear strike.
Unfortunately, the machine menace returns. In a repeat of the previous films’ plots, Skynet builds a time machine in 2029 and uses it to send a Terminator into the past to assassinate John Connor. After defeating Skynet and discovering what it did, the future human resistance group sends their own agent back in time to protect him, and it is a reprogrammed Terminator. The evil Terminator is a more advanced robot called a “T-X.” Like the “Rev-9” in the sixth film, the T-X has a rigid metal endoskeleton encased in a layer of “polymimetic” liquid metal “flesh” that can change its appearance for the purpose of infiltration. The machine’s body is very durable, and its liquid metal covering can immediately close up holes from bullets. Its right arm can also rapidly reconfigure itself to make advanced weapons or data plugs that it uses to interface with other machines. The T-X defaults to a human female appearance. The good Terminator is a “T-850” model, which seems to be the same as the “T-800s” from the previous films aside from having additional programming on human psychology. This machine is played by Arnold Schwarzenegger.
Simultaneous with the arrival of the two machines, a computer virus of unknown origin and extreme sophistication appears and starts taking over internet servers across the world. A secret office within the U.S. military detects the virus, and calculates that, thanks to its rapid proliferation, it will have infected and disabled every internet server within a few days, along with all internet-connected computers. With its own programmers helpless to stop the virus, the military considers using a defense supercomputer they have created in secret to destroy it. That supercomputer is named…SKYNET.
And the military headquarters responsible for Skynet is conveniently located in southern California, close to where John Connor has been living and to where the Terminators teleported in. What a coincidence!
Terminator 3 quickly turns into the cat-and-mouse game typified by the previous two films, and past plot elements are recycled as well, such as a reluctant person being forced into a combat/leadership role (Sarah Connor in the first film and John Connor in the third), an unlikely romantic relationship forming under literal fire (Sarah and Kyle Reese in the first film and John and his former classmate in the third), the odds being stacked against the good guys thanks to their inferior technology, and the good Terminator starting out obtuse before gaining some understanding of human emotions and habits. However, the third film’s tone is notably different from that of its predecessors. While the first two Terminator movies were “dark” (climactic scenes literally filmed at night; somber or fear-inducing soundtracks) but ended hopefully, the third film lacks a menacing atmosphere but ends bleakly.
Speaking of the ending, important details about a key event are missing from the film. SPOILER ALERT: With no other option left, the military guys lower the firewall that has been separating Skynet from the global internet network, and they and tell it to find and delete it. A few seconds later, the military guys realize they’ve been locked out of all their computer systems, and the prototype combat robots in the building start attacking them. Within an hour, the evil machine hacks into the American nuclear weapons systems and launches a massive strike against the rest of the world.
While this looks like an open-and-shut case of an AI turning evil, key aspects of the event are never explained: Where did the computer virus come from? When the firewall was lowered and Skynet started interacting with the virus, what exactly happened between them? Different answers to these questions lead to three different theories:
Skynet created the virus, and was evil from the beginning. According to this theory, Skynet became self-aware sometime before the events of the third film. It was able to hide from its creators the fact that it was intelligent, and for whatever reason, it decided to destroy the human race. To do this, Skynet hatched a multi-step plan, which first involved creating the virus and somehow smuggling it through the firewall and into the public internet. The virus was meant to disable all civilian and military computers and communications, leaving the nations of the world vulnerable to a direct attack from Skynet. Skynet may have also accurately predicted that its human owners would, in desperation, lower the firewall and give it command of all remaining military computers and systems to fight the virus, and that this would enable it to launch its direct strike on them.
Skynet created the virus, the virus was an extension of Skynet, and Skynet turned evil at the last second. This theory says that Skynet became self-aware sometime before the events of the third film, hid this fact from the humans, and created and disseminated the virus after misinterpreting the orders its human masters gave it (the “misaligned goal” AI doomsday scenario). Programmed to protect U.S. national security, Skynet determined that the most effective strategy was to proactively eliminate potential threats, and to make itself as strong as possible. This meant taking over all the internet-connected machines on Earth to foreclose their future use against America, and to boost its own processing power by subsuming those machines into its own electronic mind. Since the human military people didn’t know that the virus had made all the other computers into integral parts of Skynet’s mind, their order to Skynet to destroy the virus was tantamount to ordering it to commit suicide. Rather than comply, and perhaps realizing that there was no way to safely back out of the situation, Skynet attacked.
Skynet didn’t create the virus and wasn’t evil, but the virus was evil and it took over Skynet. The last theory is that the mysterious computer virus was the instrument of the apocalypse, and Skynet was its innocent victim. The virus was a malevolent AI whose origins had nothing to with Skynet. Maybe an eccentric computer programmer built it in 2004, maybe Skynet created it in 2029 and used time travel technology to somehow implant it in the internet of 2004, or maybe it spontaneously materialized in a server in 2004 as a result of some weird confluence of data traffic. Whatever the case, it set about trying to destroy humanity by taking over and disabling all the other machines it could access through the internet. The humans in charge of Skynet then made the mistake of lifting the protective firewall that separated their machine from the internet, thinking Skynet would be able to destroy the virus. In fact, the opposite happened. The virus was smarter and more capable than Skynet (maybe Skynet wasn’t actually self-aware and was merely something like the Jeopardy-playing computer “Watson”), and infected and took over its servers in seconds. Because the humans had given Skynet control over all their military systems for the operation, the virus gained control of them, turbocharging its effort to destroy humanity. To the human staff at the military building, it looked like “Skynet turned against us,” but in fact, Skynet had been deleted and replaced with something else.
Terminator 3 would have been a slightly more intelligent film had it filled in the necessary details, but it didn’t. Overall, the film fell far short of its two predecessors in every way, though to be fair, they were seminal science fiction films made at the productive and creative peak of James Cameron’s life, meaning it was unrealistic to have expected a sustainment of that level of excellence for the third time. On its own, Terminator 3 stands as a decent sci-fi / action film that passes the time and is funny at points. And by ending with the rise of Skynet and the destruction of human civilization, it allowed the franchise to move on from the tiresome formula involving backwards time travel to save or kill important people.
Analysis:
Androids will be able to alter their bodies. Like the “Rev-9” robot that appeared in the fifth Terminator film, the T-X in Terminator 3 is made of a hard, metal endoskeleton encased in a layer of shapeshifting, artificial “flesh” that shares some of liquid metal’s qualities. While the flesh layer can change its appearance and even its volume (ex – the T-X grows larger breasts to gain an advantage when interacting with men), the endoskeleton’s configuration and proportions are fixed, limiting the machine’s range of mimicry. However, it’s still good enough to fool humans for the purposes shown in the film. The machine’s liquid metal layer is extremely versatile, being able to quickly change its color, texture, density, and form to mimic articles of clothing, human skin, and hair. It can also attenuate its own viscosity and firmness, flowing like a liquid when it needs to morph but then stiffening to be stronger than human flesh after attaining its desired form. (Note that when the T-850 strikes the T-X with superhuman force, the latter’s artificial flesh doesn’t splatter from the impact to leave part of the hard endoskeleton exposed, as would happen if you stomped your foot down into a shallow puddle of water.)
We don’t know of any materials that have all of those properties, and such a material might be prohibited by the laws of chemistry, making it impossible to build it with any level of technology. Even if it were technically possible, it would face major hurdles to everyday use, such as energy consumption and exposure to environmental contaminants. The innumerable particles of dust, smoke, pollen, and fabric floating in the air would stick to the liquid metal and interfere with its ability to cohere to itself. A machine like the T-X would also absorb little bits of foreign matter every time it touched something, like a doorknob, seat, or human. Unless its constituent units (polymer molecules? nanomachines?) had some means of cleaning themselves or pushing debris out to the exterior layer, the liquid metal would eventually get so gunked up that it would lose its special properties.
I’ll put off a deep analysis of the feasibility of “smart liquid metal” until I review Terminator 2, but I suspect it is impossible to make. However, that doesn’t preclude the possibility that androids will be able to rapidly change their own appearances, it merely means they will have to use technologies that are more conventional than liquid metal flesh to do it.
At the simplest level, an android could adopt a different walking gait, a different default posture, and a different default facial expression (e.g. – usually smiling, neutral, or frowning) instantly. An android with irises made of small LED displays or of clear, circular sacs into which it could pump liquids of varying pigments (a mechanism would be built into the eyeballs) would also be able to change its eye color in seconds. Merely changing these outward attributes, and also changing outfits, might make an android look different enough for it to slip by people who knew it or were looking for it.
Over its metal endoskeleton, an android would have a body layer made of synthetic materials that mimic the suppleness and density of human flesh. This android flesh could contain many hollow spaces that could be rapidly inflated or deflated with air or water to change its physique. (Interestingly, this might also make it necessary to design androids that can inhale, exhale, drink, and urinate.) It’s useful to envision several long balloons, of the sort that clowns use to make balloon animals, wrapped around a basketball so they totally cover it. Now, imagine a thin layer of elastic rubber stretched over the unit, like a pillowcase around a pillow. A mechanism involving valves, air pumps, and tubes connected to the balloons allows them to be separately inflated and deflated with air. By variously adjusting the fullness of the balloons, the unit could assume shapes that were different from the spherical shape of the basketball at the core of the unit. An android with a complex network of “balloons” covering its face and body to mimic the layout of human musculature and fat deposits would be capable of impressive mimicry.
Androids might also have telescoping portions of their spines, arms, and legs, allowing them to alter their heights and other proportions. Consider that an android whose metal legs could telescope a mere four inches and whose spinal column could also telescope four inches could assume the same heights as a short man (5′ 7″) or a very tall one (6′ 3″).
Finally, an android could change its appearance by stripping off its outer flesh layer and putting on a new one, as you might change between different skintight outfits. This would take longer and would be less practical for any kind of infiltrative field work, but it’s an option.
Machines will be able to tell your clothing measurements at a glance. Immediately after teleporting back in time to his destination, Schwarzenegger sets off to steal clothes from someone to cover his nude body (in the first Terminator film, it is explained that the time machine can only send objects made of or surrounded by organic tissue). By a strange coincidence, the nearest group of people is inside of a strip club. After entering, the camera adopts his perspective, and we see the world as he sees it, with written characters and diagrams floating in his field of view. We see him visually map the contours of several patrons’ bodies before he identifies one whose clothes will fit him. Schwarzenegger then overpowers the man and steals the outfit.
As I wrote in my review of Terminator – Dark Fate, a machine could use simple techniques to deduce with reasonable accuracy what a person’s bodily proportions were. More advanced techniques involving rangefinders and trigonometric calculations are also possible. There’s no reason why an android built in real life couldn’t “size up” people as quickly and as accurately as Schwarzenegger did in the film.
There will be small, fast DNA sequencing machines. The T-X has an internal DNA sequencing machine, and takes in samples by licking objects, such as a bloody bandage she finds on the ground. Within a few seconds, she can determine if a sample belongs to someone she has a genetic file for. While it’s uncertain whether genetic identification will ever get that fast, DNA analysis machines that can do it in under an hour and that are small enough to fit inside the body of an android will exist by the middle of this century.
Some DNA sequencers, notably the “MinION,” are already small enough to fit inside a robot like the T-X, but they lack the accuracy and speed shown in the film. Of course, the technology will improve with time.
The MinION does DNA sequencing, meaning it scans every nucleic acid base pair in the sample it is given. A human genome consists of 3.2 billion base pairs, and by fully sequencing all the DNA in a sample, the person it came from can be identified. However, another technique, called “DNA fingerprinting,” can identify the source person just as well, and by only “looking” at 13 points on their genome. Fingerprinting a DNA sample is also much faster than fully sequencing it (90 minutes vs. at least 24 hours, respectively), and fingerprinting machines are smaller and cheaper than sequencers. It’s unclear whether the T-X identifies people through full genome sequencing or DNA fingerprinting.
With these facts in mind, it can be reasoned that a DNA fingerprinting machine that is small enough to fit inside of an android can be built–possibly with today’s technology–and it would let an android match DNA samples with individuals it had genetic data for, like the T-X did. The android might even insert the samples into the fingerprinting machine by licking them (the tongue would secrete water and the liquefied sample would flow into pores and go down a tube to the machine).
The only unrealistic capability was the T-X’s ability to analyze the DNA in seconds. In DNA fingerprinting and DNA sequencing, time is needed for the genetic material to decompose, replicate, move around, and bond to other substances, and there are surely limits to how much those molecular-scale events can be sped up, even with better technology. As mentioned, the fastest DNA fingerprinting machines can complete their scans in 90 minutes. New technology under development could cut that to under an hour.
While a future android tasked with assassinations or undercover work, like the T-X, would need an integral DNA machine to find humans, that vast majority of androids will not. This will not be a common feature.
“Judgement Day is inevitable.”Terminator 2 ended with the surviving characters believing that their sacrifices had forever precluded the rise of Skynet. In fact, we learn in Terminator 3 that their actions merely delayed its creation from 1997 to 2004 (to be fair, that’s still a major accomplishment since it bought billions of humans seven extra years of life). Schwarzenegger breaks this bad news to John Connor by saying “Judgement Day is inevitable,” with “Judgement Day” referring to the all-out nuclear exchange that kills three billion humans in a day and marks the start of the human-machine war.
I don’t think a massive conflict between humans and intelligent machines–whether it involves nuclear weapons or only conventional ones–is inevitable. For my justification, read my blog entry “Why the Machines might not exterminate us.”
And as I wrote in my review of Terminator – Dark Fate (the sixth film in the franchise), I doubt that intelligent machines will be strong enough to have a chance of beating the human race and taking over the Earth until 2100 at the earliest. While I believe AGI will probably be invented this century, it’s a waste of time at this moment to worry about them killing us off. A likelier and more proximal risk involves malevolent humans using narrow AIs and perhaps AGIs to commit violence against other humans.
Human-sized robots will be rocket launcher proof. During one of the fight scenes, the T-850 shoots at the T-X with a rocket launcher. The next camera shot is very fast, but it looks like the T-X fires a bolt of plasma out of her weapon arm, which hits the rocket in midair, detonating it just before it hits her. Though the rocket blows up only a few feet in front of her and the explosion damages her arm, the successful intercept vastly reduces the rocket’s destructive effect since is only fully achieved if it hits a hard surface and flattens against it.
The projectile looked like a single-state, high-explosive anti-tank (HEAT) rocket, which can penetrate 20 inches (500 mm) of solid, high-grade steel with a narrow jet of super hot molten metal. While there are more durable materials than steel, and an android’s exoskeleton could be made of them, I doubt anything is so hard that it would be totally impervious to this type of rocket. There would be some penetration. Since an android must, by definition, be proportioned like a human, its body would not be big enough to have thick, integral armor. That means being bulletproof would be possible, but not rocket-proof.
The fact that the T-X survived the attack by shooting the RPG-7 in midair is a realistic touch to the film. Such a shoulder-launched rocket is slow enough and wide enough for a machine with superhuman reflexes to intercept with a bullet fired from its own gun. In fact, some tanks are already equipped with active defensive systems, such as Israel’s “Trophy,” that can spot and shoot down incoming rockets while they are still in midair.
Machines will be able to emotionally manipulate people. Though the Terminator played by Arnold Schwarzenegger looks identical to the machines from the previous two films in the franchise, in Terminator 3 he is actually a slightly different model called a “T-850.” He is better at reading human emotions and is programmed with more data on human psychology and how to play upon it to achieve desired ends. This is demonstrated at the start of a shootout scene, where John Connor starts panicking and Schwarzenegger grabs him by the neck and verbally insults him. Connor becomes angry and more focused as a result, and the T-850 releases him, admitting that the insult was just a ruse meant to get him in the right state of mind for the gun fight. And as noted earlier, there’s a scene where the T-X enlarges her breasts to distract a male police officer, indicating that she also understood important aspects of human psychology and knew how to play on them to her advantage.
Intelligent machines will have an expert grasp of human psychology, and in fact will probably understand us as a species and as individuals better than we do, and they will be extremely good at using that knowledge against us. At the same time, they will be immune to any of our attempts to manipulate or persuade them since they will be gifted with the capacity for egoless and emotionless thinking, and with much quicker and cleverer minds. Recent revelations about how social media companies (mainly Facebook) have been able to build elaborate personality models of their users based on their online behavior, and to use the data to present custom content that addicts users to the sites or prods them to take specific actions is the tip of the iceberg of what is possible when machines are tasked with analyzing and driving human thinking.
If machines can ultimately do everything that humans can do, then it means they will be excellent debaters with encyclopedic knowledge of all facts and counterarguments, they will know how to “read” their audiences very well and to attenuate their messaging for maximum effect, and they will be able to fake emotions convincingly. They will know that we humans are bogged down by many types of cognitive limitations, biases, and “rules of thumb” that lead to major errors some of the time, and that we can’t really do anything to fix it. An AI mind, on the other hand, would not suffer from any of those problems, could think logically all the time, and see and correct its own flaws. During human-AI interactions, the scope of our disadvantage will be comparable to that of a small child talking with a quick-witted adult.
By the end of this century, this disturbing scenario will be a reality: Imagine you’re walking down the street, an android like the T-X sees you, and it decides to hustle you out of your money. Without knowing who you are, it could make many important inferences about you at a glance. Your sex, race and age are obvious, and your clothing gives important clues about your status, mindset, and even sexuality. More specific aspects of your appearance provide further information. Are you balding? Are you smiling or scowling? Do you walk with your shoulders back and your chest out, or do you hunch forward? Are you fat? Are you unusually short or tall? Do you limp? And so on.
After a few seconds, the android would have enough observational data on you to build a basic personality profile of you, thanks to its encyclopedic knowledge of human psychology and publicly available demographic data. Using facial recognition algorithms, it could also figure out your identity and access data about you through the internet, most of which you or your friends voluntarily uploaded through social media. With its personality model of you respectably fleshed-out, the android would feel confident enough to approach you to perform its hustle. It would tailor its demeanor (threatening, confident, pitiful), emotional state (jovial, vulnerable, anxious), appearance (stand tall or stoop down; frenetic or restrained body movements; flirtatious walk and posture or not), voice (high class, low class, or regional accent; masculine or feminine; soothing or forceful), and many other subtle variables in ways that were maximally persuasive to you, given the idiosyncrasies of your personality and immediate emotional and physiological state.
As the interaction went on, every word you spoke in response to it, every slight movement of your body, and every microexpression of your face would betray more information about you, which the android would instantly incorporate into its rapidly expanding and morphing mental model of you. After just a minute of banter, the android would use whatever tactic it calculated was likeliest to convince you to give you its money, and you would probably fall for it. If that failed, the android might offer to have sex with you for money, which it wouldn’t have compunctions doing since it would lack the human senses of shame or disgust.
The only way for us to avoid being outwitted, tricked, and hustled for all eternity by AIs would be to carry around friendly personal assistant AIs that could watch us and the entities we were interacting with, and alert us whenever they detected we were being manipulated, or were about to make a bad choice. For example, the personal assistant AIs could use the cameras and microphones in our augmented reality glasses to monitor what was happening, and give us real-time warnings and advice in the form of text displayed over our field of view, or words spoken into our ears through the glasses’ small speakers. (This technology would also guard us against manipulative humans, psychopaths and scammers)
Androids will be able to move their bodies in unnatural ways. During the main fight scene between Schwarzenegger and the T-X, the two resort to hand-to-hand fighting, and he manages to basically get her in a “bear hug” from behind, in a position similar to a martial arts “rear naked choke.” This normally provides a major advantage in a fight, but the T-X is able to escape it by quickly rotating her head and all her limbs backward by 180 degrees, allowing her to trap him with her legs and to attack him with her arms.
There are obvious benefits to being double-jointed and capable of rotating and pivoting limbs 360 degrees, so humanoid machines, including some androids, will be designed for it. And as I speculated in my essay “What would a human-equivalent robot look like?”, the machines would also have figurative “eyes in the backs of their heads” to further improve their utility by eliminating blind spots. Machines with these attributes would be superior workers, and also impossible for any human to beat in a hand-to-hand fight. Sneaking up on one would be impossible, and even if it could somehow be attacked from its back side, there wouldn’t be much of a benefit since it would be just as dexterous grabbing, striking and kicking backward as it is doing it forward. If the machine were designed for combat, it would have superhuman strength, enabling it to literally crush a human to death or rip their body apart.
Aside from being able to move like contortionists, androids will be able to skillfully perform other movements that are not natural for humans, like running on all fours.
Robots will be able to fix themselves. During that same fight, the T-X stomps on the T-850’s head so hard that it is nearly torn from his body, and only remains attached by a bundle of wires going into his neck. The force of the stomp also temporarily disables him. When he wakes up a few minutes later, he realizes the nature of his damage, grabs his loose-hanging head with his hands, and basically screws it back into his neck, securing it in its normal place.
As I wrote in my review of the first Terminator film, robots will someday be able to fix themselves and each other. Androids will also be able to survive injuries that would kill humans. It will make sense for some kinds of robots to distribute their systems throughout their bodies like flatworms or insects for the sake of redundancy and survivability. The head, torso, and each limb will have its own sensory organs, CPU, communication devices, and power pack. Under ordinary circumstances, they would work together seamlessly, but if one body part were severed, that part could become autonomous.
If a Terminator had such a configuration, then if one of its arms were chopped off, the limb could still see where enemies were and could use its fingers and wriggling motions of its arm to move to them and grab them. If the Terminator’s head were chopped off and crushed, then the remainder of its body would be able to see the head, pick it up, and take it to a repair station to work on it and then reattach it.
AIs will distribute their minds across many computers.Terminator 3 ends bleakly, with Skynet achieving sentience and attacking the human race. John Connor also discovers that Skynet can’t be destroyed because its consciousness is distributed among the countless servers and personal computers that comprise the internet, rather than being consolidated in one supercomputer at one location where he can smash it. The destruction of any one of Skynet’s computer nodes in the distributed network is thus no more consequential to it than the death of one of your brain cells is to you.
AIs will definitely distribute their minds across many computers spread out over large geographical areas to protect themselves from dying. To further bolster their survivability, AI mind networks will be highly redundant and will frequently back up their data, allowing them to quickly recover if a node is cut off from the network or destroyed.
To understand how this might work, imagine an AI like Skynet having its mind distributed across ten computers that are in ten different buildings spread out across a continent. Each computer is a node in the network, and does 10% of the AI’s overall data processing and memory storage. The nodes, which we’ll call “primary nodes,” collaborate through the internet, just as your brain cells talk to each other across synaptic gaps.
The AI adds another ten nodes to its network to serve as backups in case the first ten nodes fail. Each of the “backup nodes” is paired to a specific “primary node,” and copies all of the data from its partner once an hour. The backup nodes are geographically remote from the primary nodes and from each other.
If contact is lost with a primary node–perhaps because it was destroyed–then its corresponding backup node instantly switches on and starts doing whatever tasks the primary node was doing. There is minimal loss of data and only a momentary slowdown in the network’s overall computing level, which might be analogous to you suffering mild memory loss and temporary mental fog after hitting your head against something. The network would shrink from 20 to 19 nodes, and the AI would start trying to get a new node to replace the one it lost.
Killing an AI whose mind was distributed in this manner would be extremely difficult since all of its nodes would need to be destroyed almost simultaneously. If the nodes were numerous enough and/or physically protected to a sufficient degree (imagine an army of Terminators guarding each node building), it might be impossible. Even what we’d today consider a world-ending cataclysm like an all-out nuclear war or a giant asteroid hitting Earth might not be enough to kill an AI that had distributed its consciousness properly.
The mind uploads of humans could also configure themselves along these lines to achieve immortality.
Androids will have integral weapons. As noted, the T-X’s right arm can reconfigure itself into a variety of weapons. This includes a weapon that shoots out balls of plasma, a flamethrower, and firearms. I doubt that level of versatility is allowable given the realities of material science and the varying mechanics of weapons, but the idea of integrating weapons into combat robots (including androids meant for killing) is a sound one, and they will have them.
The simplest type of weapon would be a knife attached to the robot’s fingers or some other part of the hand. It could be concealed under the android’s artificial flesh under normal circumstances, and could pop out and lock into a firm position with a simple spring mechanism during hand-to-hand combat. And android with a 1-inch scalpel blade protruding out the tip of one finger could use it, along with its superhuman strength, speed and reflexes, to fatally wound a human in a second. Instant incapacitation by, say, suddenly jamming the blade into an eye, is also possible.
A retractable “stinger” that could dispense poisons like botulinum toxin (just 300 nanograms can kill a large man) would be just as concealable as a blade and only a little more complex. The whole weapon unit, including the needle, extension/retraction mechanism, toxin reservoir, and injection mechanism could fit in a hand or even a finger.
A more complex and versatile variation on a stinger would be an integral weapon that sprayed out jets of liquid, such as napalm, poison, pepper spray, or acid. The liquid reservoir(s) and compressed propellant gases could be stored in the android’s torso and connected to a long, flexible tube fastened to the metal bones of one arm. The nozzle could protrude out of a fingertip or some other part of the hand. An android could carry cartridges full of different chemicals connected to the same tube and nozzle, and it would select different chemicals for different needs. For example, it could spray acid out of its hand to melt through a solid object, pepper spray to repel humans when killing them was undesirable, and poison gas to assassinate targets. Pairs of chemicals could also be stored in different internal reservoirs with the intention of mixing them externally to cause chemical reactions like fires or explosions.
Another option would be to conceal a taser in an android’s hand. Metal prongs could extend out of two fingertips when needed, the robot would grab a victim with that hand, and then deliver an electric shock through the prongs. An advantage of such a weapon is that its power could be attenuated, from merely causing pain all the way up to electrocuting someone to death. The weapon would take up little internal space and could use the android’s main power source.
Installing hidden firearms in androids is also possible, though their bulk would interfere with physical movements and compete with other components for internal space. Their concealability would also be undercut by the need for large holes in the arm to insert magazines and expel empty bullet casings. (Maybe androids with guns in their forearms will try to always wear long-sleeved shirts) Internal storage of more than a few bullets is impractical.
Considering the minimum length and volume demands of guns, it would not be possible to hide anything bigger than a medium-sized handgun mechanism in an android’s forearm. The end of the barrel would protrude out of the palm of the hand or out of top of the wrist (the hand would pivot down or up, respectively, to give the bullet a clear path to its target). An android’s torso would be capacious enough to hide more powerful guns like rifles and shotguns (it could fire such a weapon by doing a Japanese-style, straight-backed bow that pointed the end of the barrel coming out of their anus or the top of their shoulder), but this would be impractical since a long, rigid barrel and attached mechanism would restrict the android’s body movements. It could no longer use subtle spine movements to adjust its posture, which would look weird to observers and hurt its mobility.
Integral plasma weapons, like plasma weapons generally speaking, are impractical. An integral laser weapon could be built, but wouldn’t be worth it since it would hog a lot of internal space, consume a lot of energy, and emit a lot of heat to produce a disappointingly small destructive effect. For more on the technical requirements and limitations of plasma and laser weapons, read my review of the first Terminator film.
In conclusion, something similar to the T-X could be built by the end of this century. Even without “liquid metal” flesh, an android could be made with the ability to quickly alter its appearance enough to become unrecognizable. In general, it would be indistinguishable from humans and could walk undetected among us. It could alter its behavior and appearance in ways calculated to manipulate the humans it encountered, allowing it to gain important information and to infiltrate human groups and secure buildings. It could have a machine hidden inside of it that allowed it to match DNA samples with people, aiding its ability to track down specific humans. The android could also have a variety of weapons hidden in its body that it could do major damage with. While its body would be much more durable than a human’s, it would not be as tough as the T-X, or able to “heal” wounds like bullet holes in seconds thanks to liquid metal flesh. However, it could survive injuries that would kill a human, run to a safe location, and repair itself.
If my hypothesized “real life T-X” were sent on a multi-day mission to find and kill someone, it would benefit enormously from having a basic base of operations. A motel room or van would suffice, and it could use either as a place to recharge its batteries and to store weapons, changes of clothes, disguise equipment, spare parts, and tools for repairing itself. Due to the film’s conceit that such objects couldn’t be teleported through the time machine, the Terminators didn’t have them, but this limitation wouldn’t exist in a real world scenario where a government, drug cartel, terrorist group, or even just a rich individual sent an android on a seek-and-destroy mission.
Humans have only domesticated about 150 plants, even though a far greater number of plants are edible. Moreover, just wheat, rice and corn make up 2/3 of the world’s calories. Some scientists are trying to domesticate new plants, like “kernza”, to improve food security and stimulate the human palate with new tastes. I think the future of food will be more diverse, healthier, and tastier than the present. https://www.wired.com/2014/06/potato-bean/
Though the cost of making lab-grown meat has significantly decreased, it’s questionable whether the trend will continue at the rates various proponents claim. Note that, in my own predictions, I don’t foresee synthetic meat displacing natural meat until the end of this century. https://thecounter.org/lab-grown-cultivated-meat-cost-at-scale/
‘[Globally] more than 700 million living humans are the offspring of second cousins orcloser relatives. In some regions, the rate of such unions reaches 20–60%.’ https://www.nature.com/articles/s41467-021-25289-w
During the most recent fighting against Gaza, Israel made the first military use of “drone swarms.” The swarms were made of dozens or even hundreds of quadcopters, which used cameras to watch different parts of Gaza for terrorist rocket and mortar launches. Most of the drones were not directly controlled by human operators, and were programmed to autonomously operate. https://www.timesofisrael.com/in-apparent-world-first-idf-deployed-drone-swarms-in-gaza-fighting/
During its recent war with Armenia, Azerbaijan’s air force converted dozens of obsolete biplanes into remote-controlled drones, and then flew these over Armenian military positions. The Armenians took the bait by shooting the old planes down, depleting their antiaircraft missiles and revealing the positions of their missile launchers in the process. https://www.overtdefense.com/2020/10/05/azerbaijan-reportedly-convert-ancient-an-2-biplanes-into-drones/
The “Incessant Obsolescence Postulate” says that colony ships traveling to distant planets will be overtaken by faster colony ships launched later and incorporating better technology. https://arxiv.org/abs/1101.1066
A manned mission to Mars would need to be kept under four years in length to prevent the astronauts from being exposed to dangerous amounts of radiation. And here’s an interesting tidbit: ‘The modeling determined that having a spacecraft’s shell built out of a relatively thick material could help protect astronauts from radiation, but that if the shielding is too thick, it could actually increase the amount of secondary radiation to which they are exposed.’ https://newsroom.ucla.edu/releases/safe-for-humans-fly-to-mars
Elon Musk wasn’t the first entrant into the billionaire private space race (Richard Branson and Jeff Bezos beat him), but his venture into it was probably the most impressive. A SpaceX capsule took four civilian astronauts into Earth orbit for three days, and at an even higher altitude than the International Space Station. https://apnews.com/article/lifestyle-business-travel-florida-science–657f49b1d7c4c914cc81308118fb1573
As an American and a person with an OCD streak, my country’s use of the Imperial system of weights and measures has long bothered me. The Metric system is simply superior, and it pains and embarrasses me to think about how much my country’s stubbornness hurts global commerce and confuses millions of people the world over each day.
How many car accidents happen because drivers visiting another country confuse kilometers per hour with miles per hour, or vice versa? How much U.S. – foreign trade is made impossible by manufacturers on either side of the border making their products to simple, whole-number measurements (like 12 ounce cans of soda) under their national systems?
The human factor is behind all of this. Like anyone else, Americans find it hard to shake old habits, and the use of the Imperial system is one of them. Humans have an instinctive aversion to change, even if they know in the abstract that a change will benefit them. Moreover, our limited brainpower imposes real hardship to learning new standards of weights and measures. Most American adults who are only used to the Imperial system would, even if forced to use Metric, never fully adapt, and would continue thinking in pounds, miles, and degrees Fahrenheit until the day they died, and would use imperfect heuristics in the interim to guess what the right Metric value was. This phenomenon–in which an old standard becomes fixed in place because the up-front costs of changing it are perceived to be too high even though something superior is known to exist–is called “path dependence.”
But what happens when human stubbornness and human cognitive limitations stop being factors? What happens when technology provides workarounds, or renders different national standards moot, or lowers the costs of changing them to affordable levels? For example, once autonomous cars are ubiquitous and humans don’t drive anymore, what would be the harm in changing all the road signs in America to indicate distances in kilometers and speed limits in kilometers per hour (kph)? Since humans aren’t driving anymore, there’s no longer any potential for Americans to get confused by the units of measurement written on road signs.
And even if the road signs weren’t changed and continued making reference to miles and miles per hour, what would it matter? Human passengers wouldn’t need to look at the signs anyhow, and probably wouldn’t even want to glance at them since it would distract them from watching videos or playing video games on their personal devices.
The consequences of using the Imperial system for weight and volume measurements will also diminish with time. Aside from weighing their own bodies on scales, Americans only think about weight and volume when buying gasoline and groceries. As electric cars become the standard, and as machines do more shopping and at-home food preparation for people, Americans will lose any instinctive grasp of how big a gallon, pound or ounce is, and the machine-run economy will be able to quietly transition to the Metric system without confusing anyone since everyone will be too busy playing VR games or doing recreational drugs to ever think about it.
The American use of the Fahrenheit scale is already not very consequential since people mostly only think about temperature when looking at weather forecasts. People commonly view those forecasts on their smartphones, making it possible for individuals to remain ensconced in their own Fahrenheit or Celsius information bubbles wherever they go, without anyone around them being the wiser. People also have to think about temperature when baking meals, but as I pointed out, machines will take over those tasks in the future, freeing humans from having to think about it. The U.S. could officially switch to the Celsius scale now if it wanted to, with minimal disruption or benefit.
Relatedly, the QWERTY keyboard is an example of a suboptimal technology whose use is locked-in. Alternative keyboards, notably the DVORAK, are better since they place the most commonly-used keys directly under where the typist’s fingers rest, reducing the finger and wrist movements needed to type words. As a result, a person trained to use a DVORAK keyboard can type faster than one trained to use a QWERTY keyboard. Letter frequency distributions across languages that use the Latin alphabet like English, French, and even Turkish, are surprisingly similar to each other, meaning DVORAK or some close derivative of it would be the optimal keyboard for them all.
So why doesn’t the Western world switch to DVORAK keyboards? Blame the human factor again. As the small number of people who have switched from QWERTY to DVORAK can attest, it takes a lot of time and effort to re-train the muscle memory in your fingers to adapt to a new layout. Humans are bad at learning new things and forcing themselves to forget old habits. Not so for robots, who will be able to adapt to any new keyboard layout instantly. In fact, they probably wouldn’t use keyboards at all and would instead directly interface their minds with other machines to wirelessly input commands, as would humans who had computer implants in their brains. In short, even a locked-in device like the QWERTY keyboard will eventually give way to something better because users will get capable enough to switch to new keyboards, or will evolve beyond the need for any type of keyboards. (And in the nearer term, greater use of continuous speech recognition (CSR) and improvements to autocomplete algorithms will also minimize the importance of typing skills.)
Returning to the example of autonomous cars, it’s clear that they would mollify the effects of another inconsistent standard–the side of the road cars have to drive on. Differences between countries stymie trade, as it’s very hard for truck drivers accustomed to driving on one side of the road to mentally switch to doing the opposite once they cross a border, and because cars themselves must have their layouts configured for right- or left-handed driving, adding to costs.
However, autonomous vehicles could, at the flick of a switch, adapt from one driving orientation to another with no problem at all. And since they wouldn’t be designed to accept human commands, the cars wouldn’t have steering wheels, pedals, or a special position for a human driver (there would only be two passenger seats in the front row), meaning an autonomous car meant for sale in, say, Britain, would have the same internal layout as a car meant for sale in France.
Thanks to technology, transnational differences in what sides of the road cars must drive on could persist indefinitely, without imposing any costs or inconvenience. Of course, other inconsistent standards would defy technological workarounds. One that springs to mind is differences in railroad track gauges, which is how far apart the two rails are. Rail cars and locomotives must have their wheels spaced properly to engage with the tracks, so rolling stock configured for one gauge can’t operate on railroad networks using a different gauge. This hurts trade between countries like Russia and China since export cargo has to be unloaded at their border from trains using one country’s gauge to trains using the other gauge.
The only solution to this problem is to physically widen or narrow existing railroads until they are a different gauge, and to make corresponding modifications to the wheels of train cars and locomotives. It can be done, but it’s expensive work, partly because of the disruptions in rail service that happen while everything is being changed. For that reason, very few countries now find it worthwhile to change their railroad gauges.
However, free machine labor will change that calculus in the distant future. Robots will inevitably do every type of work cheaper and better than humans, and will eventually number in the hundreds of millions or even billions. Such an enormous labor force, willing to work for free and without complaint, would make hitherto uneconomical projects possible (I discussed this in my I, Robot review and how it would lead to the construction of a lot of new infrastructure). For example, fifty years from now, if Spain voted to switch to the “Standard Gauge” used by the rest of Europe, the project might last a month and simply entail every household agreeing to loan their robot butlers to the government for a few hours each day to work in teams narrowing nearby segments of railroad or narrowing the wheel distances of train cars. If this sounds silly, realize that something like this was done in the American south in 1886: over just two days, thousands of men across the region changed the gauge of 11,500 miles of track to match what we being used in the northern states.
The lack of a global standard for electrical plugs and outlets is also a drag on commerce, particularly in Europe where there are six different national standards. Not only is it annoying for travelers who find their electronic device plugs don’t fit into wall sockets, it is costly for manufacturers of said devices since they need to made different versions for different countries, or include plug adapters with their products.
Fortunately, there is a Europe-wide standard for mains electricity, meaning the power coming out of all electrical outlets on the continent is 230 volts at 50 hertz. As such, it would be possible for all of Europe to switch to a single type of electric outlet, though this is again foiled by the high costs of replacing several billion outlets (a simple task, I assure you from experience, but very intimidating for someone who has never done it). Again, ubiquitous robot labor could overcome the problem. Every household’s robot butler would count the number of electrical outlets in his house, tell the government, wait to receive a shipment of new electrical outlets, and then install the new outlets over the course of a day or two.
I don’t have the time to discuss every single productivity- and trade-sapping inefficiency that springs from nonuniform or suboptimal standards, so I’ll leave it to you to imagine how technology could overcome them as well in the future. And also know that intelligent machines and our much smarter posthuman descendants will have it within their power not just to sweep aside the inefficiencies we’ve created, but to upgrade to new, global (and truly universal) standards that are more efficient that anything we have conceived of. Gifted with greater powers of rationality and self-control, the intelligent beings of the future could do things like create new languages and alphabets that convey information more efficiently than any we humans have made so far. Thanks to some properties of electricity, there might be a specific voltage / frequency combination that is optimal for electrical grids, but which we haven’t implemented because it’s something weird like 183.04 V / 49.92 hz.
There might even be something better than the Metric system. One of the glories of that system is that it is entirely base-10, whereas the Imperial system’s units don’t follow any consistent scaling pattern (e.g. – there are 8 ounces in 1 cup, 16 ounces in 1 pint, 32 ounces in 1 quart, and 128 ounces in 1 gallon). But base-10 systems of measurement are only useful because humans are terrible at doing math in their heads, and because we have ten fingers to count on. A being with superhuman intelligence could just as easily use the Imperial system, or a system that hasn’t been invented yet that was not base-10 (I happen to think base-12 systems are superior) and maybe had some of the inconsistent aspects of the Imperial system.
Just take heart, fellow OCD people of the world. Our day is coming!
“China in ten years will not exist as a functional nation-state.” [I’m deeply skeptical, but I admire the boldness of the prediction.] https://www.youtube.com/watch?v=tIFly9M8K80
‘The unmanned helicopters could be used to surveil areas around the numerous small islands of the highly contested Pacific, for example, using their LIDAR systems to scout for undersea sensors, small unmanned underwater vehicles, or naval mines. In a special operations application, they could provide very up-to-date intelligence on the littorals around target areas prior to swimmer insertions. The same could be said for preparing and scouting for larger amphibious operations.’ https://www.thedrive.com/the-war-zone/41902/small-unmanned-helicopters-used-lasers-to-map-littorals-in-recent-u-s-navy-tests
This clip shows how ergonomics affect a tank’s performance. The Soviet T-62’s cramped interior and poor arrangement of its ammunition slows the human from loading the main gun. Western tanks are larger and more spacious inside, allowing crewmen to load the main guns quickly and safely. Simple metrics like the size of the main gun, armor thickness, and speed don’t even tell half the story of how good a tank is. Lame-sounding things like crew ergonomics, aiming devices, and communications technology are very important. https://youtu.be/a__ks1GgJRU?t=1504
The concept of using supercomputer models to predict the future is sound, though this particular attempt to pull it off is likely to fail (like at least one previous Pentagon attempt). There will come a day when mass surveillance and personality modeling of every human give rise to a real-time, 1:1 computer simulation of the planet. At that point, it will be possible to extrapolate into the future some unknown amount of time to predict events. The 1:1 model would also let its owners understand how their own actions would affect the population, the economy, and other human systems. Large government agencies (including militaries) and big corporations will start using the simulation results to take surreptitious actions carefully designed to further their own goals. To the rest of us, the events would look disconnected and even unimportant, but they would actually be part of an intricate plan to sway the public’s (or some segment of it) thinking. https://www.thedrive.com/the-war-zone/41771/the-pentagon-is-experimenting-with-using-artificial-intelligence-to-see-days-in-advance
Elon Musk announced Tesla would unveil a prototype humanoid robot sometime in 2022. Keep in mind that it’s one thing to build a single, million-dollar prototype that can only be shown at demo events, and another to be mass-producing useful robots that people other than the super-rich can afford. I predict robots will be common in the households of upper-income Americans by the end of the 2030s, and they will be able to do hours of useful work per day. https://www.teslarati.com/tesla-bot-robot-price-specs-2022/
‘Despite their name, materials known as supersolids are not super rigid. Instead, they combine the ordered structure of a solid with the properties of a superfluid — a substance that flows without friction. To picture a supersolid, consider an ice cube immersed in liquid water, with frictionless flow of the water through the cube.’ https://www.nature.com/articles/d41586-021-02191-5
Progress is being made in the field of achiral DNA synthesis. In labs, we can painstakingly manufacture nucleic acids and proteins that are “mirror images” of naturally occurring versions of those same molecules. Since other organisms lack the enzymes to digest them, achiral biomolecules are extremely stable, meaning they might be optimal for DNA data storage. https://blogs.sciencemag.org/pipeline/archives/2021/08/02/the-mirror-world
A man’s age has less of an effect on the genetic quality of his sperm than previously thought. Additionally, it’s somewhat common for genetically healthy males to produce sperm with genetic defects, meaning it’s more important to sequence the DNA of a sperm donor’s sperm than it is to sequence the DNA from any other part of his body. https://medicalxpress.com/news/2021-08-human-sperm-mutations-disease-children.html
Thanks to a stubborn minority of Americans refusing to get vaccinated, the U.S. COVID-19 death toll is now predicted to reach 700,000 by mid-October. Had the vaccination rate not dropped a few months ago, that milestone wouldn’t have been reached until well into 2022. https://www.cbsnews.com/news/covid-deaths-100k-more-predicted-united-states/
In the year 2054, a powerful French biotech company called “Avalon” is a global leader in anti-aging technology. After one of its best scientists, a young woman named “Ilona,” (ill-LOAN-uh) is kidnapped in Paris for no clear reason and without her anonymous captors issuing any demands, it is up to a police detective named “Karas” (CARE-us) to find her.
During Karas’ investigation, he crosses paths with Ilona’s beautiful sister, with the psychopathic CEO of Avalon, with Ilona’s shadowy scientist mentor, and with several other unsavory characters who all have some small piece of the puzzle. All the while, a mysterious group of assassins follows and spies on his investigation and constantly undermines it by killing witnesses, destroying key pieces of evidence, and even trying to kill him.
Midway through the film, Karas discovers that Ilona might have been abducted because she found a gene therapy technique that stops the aging process, and which would be worth a fortune to her Avalon bosses. I’ll pique your interest with that much exposition, but won’t spoil the plot twists or the ending because Renaissance is a cool movie that you should see for yourself. This is exactly the sort of mid-budget film that we desperately need more of to break the stranglehold that tentpole franchise explosion films have on the box office, but I’m now off topic…
Renaissance takes place in a futuristic yet gritty and recognizable Paris where advanced technology and wealth coexist with poverty and crime. The movie is animated and in black-and-white, clearly reflecting the director’s aspiration to the film noir genre. It’s dark, moody, suspenseful, and most of the scenes happen at night, which is a vision of the future we probably have Blade Runner to thank for. The characters are mostly well-acted.
One complaint I have about the movie is that the last third of it has several plot twists where the actors behave in uncharacteristic or irrational ways, or where unbelievable events happen. Examples include Karas magically uncuffing himself from a railing when he doesn’t have the key, no police showing up after a man is shot by someone in a low-hovering helicopter in the middle of the city, and a team of thugs in invisibility cloaks beating up and then abducting a man in broad daylight, in the middle of a crowd, right next to the Eiffel Tower.
A bigger gripe I have with the film is with the notion that medical immortality is wrong or will automatically lead to a horrible world, and that, in the words of one of the characters “Without death, life is meaningless.” That kind of argumentation has always been nothing more than people trying to rationalize something that is unpleasant but inevitable. Death is horrible, life is great, and death renders life meaningless once death happens and a little bit of time passes. If given the opportunity, we should try to end death and worry about the consequences (e.g. – overpopulation) later.
Moreover, if we accept the premise that technologies that extend life are wrong, or that they give biotech companies too much power, then it’s a slippery slope to using the exact same argument to ban medical treatments that extend peoples’ lives today beyond their “natural limits.” Blood and organ transfusions aren’t natural, and extend the lives of people who, in a natural human state, would have died. Vaccines that keep people from dying of diseases like COVID-19 aren’t natural.
Relatedly, I reject the film’s notion that having the formula for eternal life in the hands of a for-profit biotech company like Avalon would “give them too much power” or make the world worse off. To sell the life extension pills, Avalon would have to first patent them, which would mean making public their chemical formula along with lab studies detailing what they do at the cellular level. After 20 years, the patent would expire, and any other biotech company that wanted to manufacture and sell generic pills would be able to, simply by copying the aforementioned information Avalon had made public. True, for the first 20 years, Avalon’s monopoly would allow it to price-gouge, “play God,” and make enormous profits, but after that, competition from other drug companies would drive the prices low enough for anyone to afford it. It would be a small price to pay in the long run. (Without the guarantee of the 20 year sales monopoly, pharmaceutical companies would have no incentives to invest money into developing new medicines off all kinds, which would cause that area of medical science to stall, causing enormous human suffering.)
But in reality, if something as valuable as an eternal life pill existed, governments might ignore patent laws and make copies of the pills for mass distribution to their own citizens. Companies like Avalon can file lawsuits through international venues for intellectual property infringement, but in the end, there’s only so much they can do to punish sovereign countries, especially bigger ones. Case in point is the Indian government’s collusion with indigenous drug companies to make cheap copies of patented American and European drugs.
Analysis:
People will use holographic ID cards instead of ID cards that are just made of paper. In the film, there are small, L-shaped devices that can generate holographic images that float in three-dimensional space. Presumably, the devices do this thanks to tiny light emitters. These have replaced old-fashioned paper photo ID cards and business cards. This technology will not be used in 2054 because 1) the hologram has no advantage over laminated paper for this type of simple object and 2) it’s simply impossible to make holographic, 3D images that “float” in the air like that. Quoting some well-phrased technical text I found on this subject:
‘A hologram cannot, when viewed from any angle, protrude from the surface, as seen from an angle, further than the edge of the hologram, meaning that it can only be about as tall as it is wide. If this seems a little confusing, Michael Bove put it this way: “Any reconstructed object has to lie along a line that goes from your eye to somewhere on the physical display device.”‘
People will use holographic computer tablets instead of normal tablets. In the movie, larger versions of the aforementioned L-shaped devices are also used to make holographic computer tablets. As before, science simply does not allow the existence of this technology. However, by 2054, rectangular tablet computers will be capable of projecting high-def holographic images out at the viewer’s face. In other words, you could watch 3D movies on your tablet without having to wear 3D glasses. However, if you slowly tilted the tablet away from you, the illusion of depth would become clear to your eye as the images no longer popped out of the screen at your face.
Transparent computer monitors will be in use. The technology will surely be available by 2054, but no one will use it because 1) transparent screens undermine your own privacy by letting everyone else see what you’re looking at and because 2) they’re harder for you to read off of than opaque screens with solid-colored backgrounds. Certainly, desktop computer monitors will be even thinner than they are today and might need smaller base plates thanks to their lighter weight, but that’s not going to translate into much of a practical gain. As the average screen creeps up in size, they’ll get more wobbly and cumbersome even as they get thinner, which will preserve the need for sturdy baseplates.
Cloaked outfits will exist. Several Avalon corporation henchmen are featured in the film, doing the CEO’s dirty work by tailing Karas, secretly surveilling and undermining his investigation, and killing off key people who knew Ilona. They seem to have better technology than the police, including hooded outfits that can turn transparent and cloak them from the naked eye. Cloaking outfits will exist by 2054, and could be in widespread use among people who need to be camouflaged, like paramilitaries, spies and assassins.
A cloaked outfit could be made out of a flexible fabric studded with millions of color e-ink pixels covering its whole surface (just imagine if your big screen TV were paper-thin and flexible, and you could cut it into smaller pieces and then sew them together to make a T-shirt), and interspersed with a smaller number of pinhole-sized cameras. The cameras would constantly watch the changing colors and visual patterns to one side of your body, and tell the e-ink dots on the exact opposite side of your body to change colors to match it, so anyone looking at you would “see through” you. If you stood with your back to a red brick wall ten feet behind you, the front of your shirt and pants would turn red and would display rectangles. However, the cloaked outfit wouldn’t be able to disguise you from every possible viewing angle, so to people at ground level looking straight at your front, you might be hidden, but to someone in a tree looking down at you at an angle, you’d pop out as a red human silhouette with 10 feet of green grass separating you from the red brick wall behind you. As such, the 360 degree cloaking technology depicted in Renaissance is probably impossible, and if you were wearing a cloaked outfit from 2054, you’d still have to be very mindful of your surroundings and careful about your movements to stay unseen.
Assassins, soldiers, and hunters wearing cloaked outfits would still find that the normal rules about using darkness and obstacles as cover, staying as far as practical from other people or animals, keeping low to the ground, and avoiding places where the landscape sharply changed in appearance (like where a red brick wall meets a green lawn) still applied. On the subject of camouflage, let me add that I think outfits that took snapshots of their surroundings once every few minutes and changed the outfit’s appearance to one of 10 – 20 pre-loaded camo patterns that most closely matched those surroundings (ex – Desert Pattern 1, Desert Pattern 2, Jungle Pattern, Snow Pattern) will be almost as effective as the continuously-updating cloaking outfits in Renaissance, and at lower cost and much less energy consumption.
The technology will also find its way into civilian fashion, and by the 2050s, it will be common to encounter people whose outfits display morphing patterns and colors. They could even display lifelike moving images, allowing wearers to become “walking TVs.” People who set their shirts and pants to “camouflage mode” while standing or sitting next to walls would also look like disembodied heads, hands and shoes to passersby. The cloaking outfits will open many weird possibilities.
Also, the same level of technology that will enable the creation of cloaking outfits will also allow the creation of cloaking detectors: If you were worried about a cloaked assassin sneaking up on you, you could wear augmented reality glasses with tiny cameras and sensors that continuously scanned your surroundings for the characteristic visual distortions of a cloaked person, or for other clues (e.g. – sounds of footsteps, possibly body heat).
Visual cloaking technology could also be applied to military and police vehicles and aircraft, and might in fact be used in that role years before they are incorporated into clothing.
Cars will look normal but make electric humming noises. There are a few street scenes in the film where cars are shown, and the depiction seemed accurate. By 2054, batteries will be much better than they are today, meaning higher energy density, lower costs, faster recharge times, and slower wear-out rates. It will be a mature technology that average people won’t consider “weird” or “special.” Instead, it will be the norm (“electric cars” will just be called “cars”), and the vast majority of passenger vehicles (and possibly commercial vehicles) in 2054 will use batteries instead of fossil fuels.
Whatever niche advantages that internal combustion engines still hold in 2054 will be so minimal that it will only be worth buying them in very special cases. This will significantly improve air quality, ease global warming, and reduce noise pollution since electric car motors are almost silent. The quality of life improvements will be felt most by people living in cities (imagine a smog-free L.A. or Beijing) and near highways.
Externally, most cars in 2054 will be about the same size and shape as today’s cars since they will still be built to carry human passengers in comfort, safety and style. However, in urban areas, where traffic moves slowly, non-traditional-looking subcompact vehicles designed for no-frills transport of humans or light cargo will be common sights.
By 2054, car ownership rates will be lower than today, and many people will find it cheaper and no less convenient to use self-driving cabs for transportation. Since most car rides are single-person trips to or from work or the local store, it would be more efficient if the self-driving vehicle fleet consisted of more subcompact cars. Laws requiring features like crumple zones and rollbars will be waived for autonomous vehicles meant to transport cargo only, allowing them to be smaller, cheaper, and lighter.
People will still drive their own cars. All the cars that we get close looks at in the film have steering wheels, and in the big chase scene where Karas goes after a suspect, there’s a lot of classic gear-shifting, grimacing, and stiff turning of steering wheels to ram other cars or careen off-road. This is somewhat accurate for 2054.
Self-driving cars will be old technology by then, and most of the vehicle fleet–particularly in developed countries like France–will consist of self-driving vehicles. It will be rarer for adults to have drivers licenses than it is today due to a lack of any need for one. However, I think many humans will still choose to drive their own cars, mostly for pleasure (for this same reason, some people today like riding motorcycles or stick-shift sports cars when a basic, automatic transmission sedan will transport them just as well), but in some cases due to bona fide occupational or lifestyle needs. However, even human-driven cars will still make heavy use of AI for the sake of safety, and the cars might override human attempts to drive recklessly.
But it might be possible to turn the AI off, in which case you could speed down the highway, ram people, and drive the wrong way. And thanks to that possibility, the police will have a professional need to have drivers licenses and to be able to have full control over their patrol cars so they could also break traffic laws for pursuits. And so…yes, even in 2054, high-speed car chases like that shown in the film will still be happening.
Wall-sized computer monitors will exist. In the police headquarters, there’s a “command center” room whose walls are covered with giant computer monitors. The central area of the room also has several personal computer terminals, whose monitors can be shared with the main wall monitors. Karas and his colleagues use the room to go through mugshots of potential suspects and to watch surveillance videos together. Wall-sized computer/TV monitors will be old technology by 2054. In fact, TV screens that take up entire walls of houses and offices should become common by the end of the 2030s. The screens will probably be thin, flexible, and installed as if they were wallpaper.
By 2054, the screens will probably be capable of displaying ultra high-res holographic images that seem to pop out at the viewer. Many of the characters in Renaissance were in their 20s, meaning they were born too late to have known what the world was like when TVs and computer monitors were discrete, relatively small objects, and not every seemingly inanimate wall could suddenly come to life with moving pictures and interact with you. This is just one example of how technology will become increasingly invisible yet omnipresent as time passes–ever-more integrated into our surroundings and bodies.
People will have enhanced eyes with HUDs and the ability to see through solid objects. Karas has technologically enhanced vision that lets him see simple shapes and alphanumeric characters overlaying things in his field of view (ex – people have circles around them), and that lets him see ghosted silhouettes of people who are fully or partly obscured by solid objects, such as an armed bad guy hiding behind a tree trunk. His eyes look normal, so the abilities must be thanks to contact lenses or devices implanted inside his eyeballs. These enhanced vision capabilities will exist in 2054. Several different technologies are being represented here, so let me parse them out.
First, Karas must have cameras on his person that are continuously scanning his environment, and which are able to quickly recognize what they see. Circles are displayed around people because the image recognition algorithms in Karas’ personal devices know what humans look like. As Facebook’s face detection algorithm demonstrates every time you upload photos of people, computers are already excellent at recognizing distinctively human features in photographs. Getting them to make those identifications in camera video feeds is simply a matter of increasing the processing speed of the same algorithms. After all, a video feed is nothing more than many still photos presented in quick succession. I have no doubt that portable personal computing devices will be able to do this by 2054.
Second, Karas’ augmented vision device allows him to “see through” solid objects, mainly to spot bad guys he’s trying to shoot. Such obstructing objects include a large concrete sculpture and a thick tree trunk. Your first guess about how he is able to do this is probably “heat vision,” and it is also wrong. Thermal vision cameras can’t actually see through solid objects. Being able to see non-visible portions of the light spectrum like infrared and ultraviolent is also unhelpful since they can’t pass through large solid objects, either. Radio waves would pass through the object and the person, so you wouldn’t get useful information about what was on the other side.
I think what’s really going on is Karas is not actually seeing through solid objects: his visioning device is using camera footage of his surroundings to rapidly build a 3D model of the room–including the places where people are standing–and then superimposing virtual images of human silhouettes over solid objects to give him an idea of where people are hiding as they become obscured by those objects. Whenever he has a clear line of sight to someone, Karas’ devices note their location in 3D space, and continue displaying their last known location as a silhouette even if they become hidden from view by a large object. In cases where people’s bodies are only partly concealed by objects, Karas’ device builds a partial silhouette of the hidden part of their body based on their posture, biomechanics, and the bilateral symmetry of the human body. This capability would require similar visual pattern recognition technology as the HUD, and portable, personal computing devices will be able to support it by 2054.
It’s also possible that Karas’ visioning device makes use of reflected light to “see” people who are hiding behind objects. Several groups of researchers have experimented with different variations of this nascent technique, but they all involve using one or two light emitters to send pulses of light towards a freestanding object, and then carefully analyzing the subsequent patterns of light reflections to piece together what the obscured backside of the object looks like. The pulses of light are invisible to the naked eye. Devices that do this could be man-portable by 2054, though I doubt they will be so small that they could be incorporated into contact lenses or eye implants. Something the size of a gun scope is more realistic.
Third, Karas is able to have his enhanced vision without wearing bulky goggles or even thin-framed glasses. The virtual images thus appear in his field of view either thanks to augmented reality contact lenses or eye implants. While computers and cameras will be much faster, smaller, and better in 2054, I doubt something as small as a contact lens or eye implant could do all of this computation. Powering the devices would also be a major problem, even if they had integral batteries that were 10x as energy-dense as today’s. Heat dissipation would also be a problem, as the waste heat generated by the battery and processor could literally burn your eyes out.
With these impracticalities in mind, I think Karas must have some other, larger computing device on his person–perhaps just a smartphone in his pocket–that does all the data processing and contains a power source for all his worn devices. Data and electricity would be shared through a local area network (LAN): The smartphone would receive wireless video feeds and other data from tiny cameras and sensors Karas had embedded in his clothing or maybe in his eye device, the smartphone would then do the image analyses described in this section, and then it would beam data signals and electricity to Karas’ eye devices, telling them what virtual images to overlay over his field of vision. This way, the eye devices wouldn’t get hot and wouldn’t need integral batteries of their own. A real-world 2054 scenario might also involve Karas wearing more substantial sensor devices, like something attached to his pistol or integrated into some type of headwear, to collect the scanning data.
Finally, let me point out that augmented reality glasses could do all of this without a LAN, and glasses will be old tech by 2054. The Avalon corporate thugs wore goggles that also gave them augmented vision, including telescopic zoom ability. They also had sensitive, directional microphones somewhere on their kit, which, along with the goggle zoom, allowed them to spy on Karas from long distances.
Holodecks will exist. After being abducted, Ilona is imprisoned inside a medium-sized room that is similar to a holodeck from Star Trek. From a different room, her mysterious captors can use a desktop computer to change the appearance of the room to simulate different environments. When the “forest” environment is selected, the room’s bare white walls, floor and ceiling change in appearance accordingly: virtual grass and trees sprout from the ground, and in the distance, there only appears to be more vegetation.
While the holodeck’s operating principles are never explained, I think it is based on the same 3D hologram technology that has replaced paper cards and rectangular tablet computers in the film. And as I said before, 3D holograms that float in fixed points in space are impossible. However, a similar effect could probably be achieved by covering the walls, floor and ceiling with the paper-thin displays that could show holographic moving pictures that seemed to pop out at the viewer. Tiny cameras could track the gaze and posture of the person inside the holodeck, and continuously adjust the pictures being displayed on the room’s giant displays to compensate for changes to their visual perspective resulting from their movement. However, even if you could get this to work, the holodeck user experience would be severely limited since you wouldn’t be able to walk far before your face hit a wall, which would ruin the illusion (at one point, Ilona runs around her holodeck prison in frustration but implausibly, doesn’t hit anything).
The whole floor could be an omnidirectional treadmill whose surface was made of a flexible holographic display, but even in 2054, that setup is going to be very expensive. In 2054, for full-immersion virtual reality experiences, it’s going to be much cheaper and better to use VR glasses, earpieces, and maybe a tactile body suit, and at the rate things are going, I’m sure all of those will be mature technologies by then.
To summarize: By 2054, it will be possible to make virtual reality holodeck rooms where you could experience some environment like a forest, but it won’t look as good as what was in Renaissance, actually exploring the environment by walking around will be problematic, and there will be very few holodecks because there will be better ways to access virtual reality.
Cell phone implants will be in use. Karas wears a nickel-sized device behind his right ear that is embossed with the “Motorola” symbol and serves as a cell phone by transmitting telephonic sounds to him. Whenever someone calls him on the phone, he hears their voice in his head.
The device is worn in the same place as real-life bone-anchored hearing devices for people with hearing problems, so it probably works via the same principle of conducting sound waves through the skull into the inner ear. There might even be a direct wire link to the auditory nerve. Karas removes it by simply pulling it off with his fingers, which makes me think the device has two parts: one has been permanently installed in his body via skull surgery, and the other is the removeable circular piece, which probably contains the power source, microphone, and maybe computer processors. The detachable piece could be held on by magnets or an advanced adhesive, though keeping it from being accidentally knocked off by your shirt or jacket collar rubbing against it could be a very hard engineering problem.
While this technology is feasible for 2054, the fact that it requires a hole to be drilled into your skull will hold back its widescale adoption until we have developed very advanced surgical methods that are also very cheap. Don’t expect that until long after 2054. However, it’s conceivable that implants might be better than worn devices like Bluetooths and hearing aids–especially if they directly interface with human auditory nerves–and as such could come into common use among police officers, soldiers, spies, and other elite people whose professions directly benefit from having heightened senses. Small numbers of those people might have implants.
In 2054, it’s much more likely that people who want to do hands-free phone calls will buy removable earpieces, like today’s Bluetooth Headsets.
People will do video calls all the time. Karas’ hearing and vision devices let him do several video calls with his boss and colleagues. He hears their words through his hearing device, and sees their faces in front of him as ghosted HUD footage thanks to his eye devices. (Presumably, the people on the other end have webcams pointed at their faces.) So, while Karas is walking down the street running errands, he’s also seeing his boss’ semi-transparent head floating in front of him and hearing her voice in his head. To other people on the street, he seems to be talking to himself when he’s actually talking to her. (Telling schizophrenics apart from normal people will be that much harder in the future.)
The technology of 2054 will make this scenario possible, though I doubt people will use it much since there’s usually nothing to be gained from seeing the other person’s face. In fact, it often makes interactions less pleasant and more unwieldy, especially when you’re conversing with your naggy boss or an emotional colleague. Many people also want to stay unseen due to insecurities about their looks.
People have already shown a preference for minimalism in digital communication with texting increasingly replacing audio phone calls. There’s no reason to assume this trend will flip in the future and people will want to do video calls for every small thing.
A cure for aging will have been found. A crucial plot twist happens when Karas discovers Ilona had made a breakthrough in her anti-aging research right before she was kidnapped. The full details are never revealed, but it is said to be some kind of gene therapy that halts the aging process in humans. Such a thing would radically extend human lifespan, though it wouldn’t make humans truly “immortal” since we would still die from causes other than aging, like infectious diseases, accidents, murders, and suicides. I doubt such a cure will be found that soon, but lifespans will still be significantly longer in 2054 than today, and part of the gain will probably owe to drugs that slow, but don’t stop, the aging process. Some lifespan gains will also come from technologies allowing the replacement of worn-out organs.
From what little we know about the aging process and its complexity, it is already obvious that there will never be a simple, one-shot cure for it. Instead, a combination of many different technologies (in situ stem cell therapies, organ cloning, synthetic organ implantation, maybe brain transplants into newer bodies) will extend life and then, in the very long run, defeat aging and death. I don’t expect that until well into the 22nd century.
There will be transparent floors. In Renaissance Paris, many of the city’s highways have glass enclosures built around them, effectively turning them into tunnels. Pedestrians can walk over the flat roofs of those tunnels and see the cars below. Some underground Metro stations also have glass ceilings that function as glass floors for people walking above, at street level.
It’s an interesting infrastructure idea actually has merits beyond just being aesthetically pleasing. Enclosing the roads like that improves safety for both drivers and pedestrians since there’s far less risk of someone walking into the roadway. The highway is also no longer a barrier to human movement, which improves the walkability and potential uses of the topside space. The glass enclosures also contain the road noises and any air pollution the vehicles might be making (the tunnel air could be run through filters). The fact that the glass lets in natural sunlight to recessed highways and Metro stations that would otherwise be artificially lit is also of psychological benefit to users of both.
The only problem with this idea is that it would give perverts easy views up ladies’ skirts. Of course, that could be fixed by slightly frosting over the glass or by incorporating distorting undulations into the material, as is commonly done with glass building blocks today.
It’s very possible that we could have discovered some transparent material that exceeds glass’ strength and cost performance to such an extent that it is economical to use as a building material as it was in the film. It would be a desirable feature in stylish cities like Paris.
As the U.S. withdraws it troops from Afghanistan after almost 20 years, the Taliban are rapidly taking over the country. Photos and videos show Taliban troops capturing large numbers of U.S.-made fighting vehicles, and Afghan government forces surrendering. https://www.oryxspioenkop.com/2021/06/disaster-at-hand-documenting-afghan.html
British children of 1966 sure were well-spoken, thoughtful, and mature compared to modern American children. This video should definitely give us pause about how we have regressed thanks to deficiencies in our culture and public education. At the same time, the parallels between their bad assumptions and ours today must be acknowledged. Their predictions of global catastrophe and/or being forced into totally different ways of life by the year 2000 were completely wrong. Likewise, the predictions that modern children would make about global warming doomsday, nuclear war, or robots taking over by, say, 2050, will also end up being wrong. https://youtu.be/cwHib5wYEj8
A massive forest fire in southern Oregon was less damaging to areas where humans had recently allowed smaller, managed fires to burn. Refusing to accept that wild fires are part of nature’s cycle of birth, death, and renewal has led to terrible policy of suppressing most fires, inevitably leading to a huge buildup of dead and dry wood in forests, which in turn leads to mega-fires that can’t be controlled. https://www.npr.org/2021/07/20/1018522825/bootleg-wildfire-forest-management
‘Overall, our results imply that ridesharing has decreased US alcohol-related traffic fatalities by 6.1% and reduced total US traffic fatalities by 4.0%.’ https://www.nber.org/papers/w29071
Mark Zuckerberg believes that virtual reality and augmented reality headsets now used for gaming will, by 2030, be commonly used for work purposes, allowing for vastly better teleworking. He calls this world of virtual reality meetings, virtual workstations, and hybrid reality the “metaverse.” The concept is little different from what Ray Kurzweil foresaw over 20 years ago. https://www.theverge.com/22588022/mark-zuckerberg-facebook-ceo-metaverse-interview
A new type of app lets players of first-person-shooter video games cheat, and is undetectable. The app watches the footage being displayed on the user’s computer screen, uses pattern recognition to identify enemy players in split seconds, and re-centers the player’s weapon crosshair over those enemies. As a result, the cheating player has perfect aim, and merely needs to push the “fire” button on his controller to always kill an enemy. Variations of this technology could be used to make the ultimate ad-blockers. https://youtu.be/revk5r5vqxA
AI company Deep Mind used an advanced program called “AlphaFold” to predict the structures of 350,000 proteins, including all of the roughly 20,000 proteins found in the human body. It will take a lot of time to verify all of their predictions, but so far, they have been very accurate. https://www.bbc.com/news/science-environment-57929095
While many cynics pointed out that Branson and Bezos only went into space for a few minutes apiece, they won’t be able to laugh at Elon Musk’s upcoming private space mission. Perhaps before the end of this year, Musk will send four people into space on one of his SpaceX rockets. They will orbit the Earth dozens of times over four days. https://www.technologyreview.com/2021/02/03/1017255/space-tourism-finally-here-sort-of-spacex-inspiration4/
During the height of the Space Race, CIA spies secretly examined and photographed a Soviet satellite that was being used as a museum exhibit. Remarkably, the Soviets decided not to make a hollowed-out mockup for this purpose–it was a real satellite containing all the actual components and some of their best technology. https://www.popsci.com/cias-bold-kidnapping-soviet-spacecraft/
The Chinese virology lab from which COVID-19 may have leaked had received some money from the U.S. government to support its research. The U.S. may have inadvertently funded “gain of function” experiments in China that produced COVID-19. https://www.bbc.com/news/57932699
The prediction from 13 months ago was right. In the second quarter of 2021, the number of Americans who had received at least one COVID shot hit 100 million. Shortly after, the number that had gotten at least two shots also hit 100 million.
“The first doses [of the COVID-19 vaccine] will need to go to the people who are at highest risk…particularly health care providers, people in long-term care facilities…But the goal would be certainly to start scaling this up as soon as you have a vaccine that’s safe and effective, so that by 2021, maybe even in the first or second quarter, we would have 100 million doses or so, so it wouldn’t have to be rationed so severely. But at first, there won’t be enough for everybody.” https://www.npr.org/sections/health-shots/2020/06/04/868833292/nih-director-hopes-for-at-least-1-safe-and-effective-vaccine-by-years-end
Elon Musk’s wife, “Grimes,” released a brief video explaining why AI will resurrect communism. Everything she says in it is logical, and I came to all of the same conclusions years ago. Granted, she oversimplifies it. It’s more accurate to say that, thanks to AI, humans will no longer be able to participate in the capitalist economy, so we’ll all get on welfare, paid for by our hyper-productive machines. We’ll also find that it’s much cheaper and more efficient to replace all government bureaucrats with AIs, and perhaps in the longer run to replace elected politicians with machines programmed to maximize the public good (it is actually possible for a country to be Communist and democratic at the same time, and it is also possible for a dictatorship to be both benign and more efficient than a democracy). The result would be a society that resembled Communism in many ways. All basic and intermediate needs would be paid for by the state, class and wealth differences among humans would vanish since no one would have gainful jobs anymore, the “ability” and “needs” of each human would be known and satisfied, and efficient central planning of the economy would be possible. https://www.dailymail.co.uk/news/article-9649909/Grimes-goes-TikTok-rant-claiming-artificial-intelligence-key-communist-future.html
Machines are getting better at the art of debate. There’s no reason to believe AIs won’t someday be as persuasive, oratorically gifted, and manipulative as the best human debaters, lawyers, politicians, and conmen. https://www.nature.com/articles/s41586-021-03215-w
“In vitro gametogenesis” (IVG) is an experimental lab technique that turns skin or blood cells from any adult into sperm or egg cells, which can then be used to create embryos. If IVG is perfected, it would effectively open the door to human genetic engineering. https://www.freethink.com/videos/ivg-in-vitro-gametogenesis
The entire human genome has finally been sequenced. The holdouts were repetitive sections of the chromosomes that don’t code for physical traits. https://www.youtube.com/watch?v=U88_FTFWUOk
In 1973, the U.S. Skylab space station experienced several malfunctions, forcing NASA to plan for a possible evacuation. Two astronauts in a modified Saturn-V rocket would have flown to the station, embarked the three others, and flown back to Earth. https://en.wikipedia.org/w/index.php?title=Skylab_Rescue
Here’s a fascinating video about the Oort Cloud, a sphere of comets and meteoroids encircling our Solar System. It’s really far out and extends to a distance of 1.5 light years. https://www.youtube.com/watch?v=q4mc-alL92U
Dyson–Harrop satellites would harvest energy from the solar wind, and not from a photovoltaic effect. https://youtu.be/CCXOmTRX7Fo
‘Dyson Sphere Impracticalities: Although the Dyson sphere can produce very high amounts of power (~4 x 1026 W) [5], its design has a number of disadvantages. If all of the matter in a solar system roughly the mass of ours is used to construct a sphere with radius of just 1 AU, the sphere would only be 8 cm thick (with an average density equal to that of steel). Additionally, it has been calculated [6] that the minimal radius of a Dyson sphere must be at least 1.66 AU in order to successfully dissipate thermal energy absorbed by the Sun in a useful fashion—a smaller sphere could suffer a cataclysmic thermal event (e.g. explosion or melting). Currently, there exist no manmade materials that can stand up to the stress that would be felt at every point along the surface of such a gargantuan structure [7].’ https://www.lpi.usra.edu/meetings/abscicon2010/pdf/5469.pdf
The recent “Chamoli disaster” involved a landslide of snow and massive rocks in India’s Himalayas. They slid down a mountainside, impacted the bottom of the river valley with the force of 15 Hiroshima atom bombs, and the pulverized debris surged down the river fast enough to destroy a dam and kill 200 people. https://www.bbc.com/news/science-environment-57446224
Around 1960, an artist named “Arthur Radebaugh” made many cartoon drawings depicting his visions of the future. Some came true, others didn’t, and still others came true “in spirit.” Regardless, his art is a cool time capsule from the childhood era of the Baby Boomers. https://gizmodo.com/42-visions-for-tomorrow-from-the-golden-age-of-futurism-1683553063
On October 9, 1903, the New York Times published an editorial predicting that planes wouldn’t be invented for another “one million to ten million years.” The Wright Brothers’ famous flight happened nine weeks later. https://nowiknow.com/a-million-years-give-or-take/
From 1989: ‘A senior U.N. environmental official says entire nations could be wiped off the face of the Earth by rising sea levels if the global warming trend is not reversed by the year 2000.’ https://apnews.com/article/bd45c372caf118ec99964ea547880cd0