‘Yet notwithstanding this promising mission, the Russian exiles also pose a major security risk to the countries where they are landing. The main reason is that the Kremlin has long exploited the Russian diaspora as part of its irregular warfare operations. Given the size and spread of the new Russian diaspora, there is no doubt that strategists in the FSB are taking the opportunity to plot nasty operations.’ https://www.politico.com/news/magazine/2023/04/04/russian-agents-war-refugees-00090192
In the Soviet T-55 tank, there are two metal canisters full of compressed air right behind the driver’s head. What could go wrong? https://youtu.be/sOX25jfEiO0
The B-2 diesel engine was invented in the USSR in the 1930s and became the standard for all its tanks. Its design was progressively improved over the decades, and the B-2 is still used in Russia’s new tanks. https://youtu.be/nyWAd1pQiwU
Here’s an interesting report on the “availability rates” of different U.S. Navy planes. If I have a fleet of ten fighter planes, and the availability rate is 80%, then at any given moment, eight of the planes are able to take to the air, but two of them can’t because they are broken and waiting to be fixed. Availability rates decline as planes get older and more worn out, and the F/A-18 Super Hornet has an anomalously poor rate. https://www.cbo.gov/publication/58937
The Germans had the best machine gun of WWII. After the war, they made several improvements and kept using it until 2012. https://youtu.be/A0cvxrAkbbE
A 1968 massacre of Vietnamese villagers by South Korean troops allied with the U.S. shows that any group of people can be a victim or oppressor. “The line separating good and evil passes not through states, nor between classes, nor between political parties either – but right through every human heart…” https://www.npr.org/2023/04/12/1167951366/south-korea-vietnam-war-massacre-court-case
America’s USS Gerald Ford aircraft carrier was launched 10 years ago but only now is finally entering regular service. The delay is mostly due to the ship being packed with new, unproven technologies that sailors had to slowly work the kinks out of. The expensive lessons learned from this will ensure that the next ship in the Ford class enters service much faster. https://www.businessinsider.com/navy-carrier-uss-gerald-ford-deploys-after-years-of-delays-2023-4
Though autonomous vehicles have fallen below the radar recently, and the slowdown in progress has some claiming the technology will never reach human levels, Bill Gates thinks they’re still improving, and will get much better and more common over the next 10 years. https://www.gatesnotes.com/Autonomous-Vehicles
Corporations are not “superintelligences,” as some people like to argue. Likewise, the team of humans that built AlphaGo could not defeat their machine in a game of Go.
AI-generated, lifelike images will lead to AI-generated, lifelike videos, which creates a new frontier for pornography, including child pornography. As distasteful as the subject is, it must be asked whether such footage should be criminalized if the children shown in it are fake and don’t resemble any real children. In such a case, who is being victimized? https://www.foxnews.com/world/canadian-man-sentenced-prison-ai-generated-child-pornography
The singer “Grimes” has invited fans to create computer-generated songs using digital reproductions of her voice, so long as they split the royalties with her 50/50 on any resulting songs that become popular. I have previously predicted that celebrities will start licensing their voices and likenesses in such ways. It will get more common with time. https://www.npr.org/2023/04/24/1171738670/grimes-ai-songs-voice
From 2011: ‘The report, commisioned by the New York State Energy Research and Development Authority, said the effects of sea level rise and changing weather patterns would be felt as early as the next decade. By the mid-2020s, sea level rise around Manhattan and Long Island could be up to 10in, assuming the rapid melting of polar ice sheets continues. ‘ https://www.theguardian.com/environment/2011/nov/16/climate-change-report-new-york-city
‘The biodiversity influence of avalanches comes from the natural corridors free of bushes and trees they create as they thunder down a mountainside. These become species-rich grasslands or meadows in themselves, but also, vitally, connect different habitats up and down the mountain. This can be crucial for species such as butterflies, who benefit from the cleared vegetation in the nutrient-poor soils of the Alps.’ https://www.bbc.com/future/article/20230405-how-avalanche-management-could-help-wildlife-in-the-alps
It’s not an accident that life on Earth only makes use of 20 types of amino acids, when a much larger number of acids with different molecular configurations could exist. https://pubs.acs.org/doi/full/10.1021/jacs.2c12987
There are shark repellents that are proven to work. One is a chemical mimicking the smell of dead sharks, and the other is a device that uses magnetism to scramble a shark’s sense of direction if it gets near. https://en.wikipedia.org/wiki/Shark_repellent
Here’s a fascinating educational video from the 1930s explaining how images were transmitted over phone lines. https://youtu.be/cLUD_NGE370
There’s a new twist in the scientific debate over whether and to what extent money can buy happiness. For all but the most naturally miserable people, more money DOES make them happier without any upper limit. However, the “happiness dividend” steadily shrinks. https://www.pnas.org/doi/10.1073/pnas.2208661120
A U.S. military drone filmed a spherical UFO during a surveillance mission over the Middle East. https://youtu.be/1fKhqnAtnx8
On the night of March 8, 1994, several people in the same part of Michigan saw glowing UFOs in the sky. The separately reported it to the authorities, and a local meteorologist in charge of the area’s weather radar station pointed the dish towards the objects, resulting in a bizarre radar image. He and all of the eyewitnesses are still adamant about what they saw, and the objects remain unidentified. https://youtu.be/QMQArS-s90I
A third, highly effective weight loss drug might be coming to the U.S. market soon. I’ve long thought that the obesity epidemic will only be ended with pharmaceuticals and, in the longer run, genetic engineering. We can’t count on most people to exercise more self-discipline to control their weight through diet and exercise. https://apnews.com/article/mounjaro-wegovy-ozempic-obesity-weight-loss-bd0e037cc5981513487260d40636752a
In as little as 50 years, profiles of dead users could outnumber the profiles of living users on Facebook. Maybe digital clones of dead people will outnumber living “original” people as well. https://time.com/5579737/facebook-dead-living/
“In the near future,” a man named “Drucker” (played by Tony Goldwyn) has become the world’s richest person by founding a biotech company that clones animals and human organs. The company has also invented a brain scanning device that can map the minds of recently deceased animals and then implant their memories and personality traits into the brains of newly created clones. One of Drucker’s businesses, called “Re-Pet,” pulls those technologies together as a walk-in retail chain where bereaved people bring in their dead cats and dogs and walk out with healthy clones of them. Cloning only takes two hours.
Using the same technology and facilities, Drucker also runs a secret and illegal human cloning operation. He makes human clones for friends and for powerful people who can’t cope with the deaths of loved ones, or who have a vested financial interest in not letting someone else die. For example, at the beginning of the movie, a star football player breaks his neck during a game and the team’s owner secretly pays Drucker to make a clone and dispose of the disabled, comatose player. The guy wakes up in the hospital not realizing he’s a clone, and the devastating on-field accident is explained to the public as miraculously not as bad as it looked on TV. The clone returns to his job and the team keeps winning.
Though Drucker’s illegal human cloning operation is only known to a handful of people, his legal cloning businesses have still made him a target for religious extremists and environmentalists who believe the technology is unethical and lets humans “Play God.” Some of these opponents also fear that Drucker’s ultimate goal is to use his money and growing influence with politicians to overturn the ban on human cloning, which will bolster his wealth and power even more. Over the course of the movie, it becomes clear that Drucker is indeed unfit to wield such power and that he’s a charismatic sociopath who doesn’t value human life.
Partly because he fears assassination, Drucker routinely makes “backups” of his mind using a brain scanning device, and he has instructed his inner circle of geneticists and gun-toting henchmen to secretly clone him if he ever dies. That way, his companies and his long-term plans will keep going forward no matter what. Unfortunately for Drucker, he does get murdered, and his living will so to speak is enacted. And unfortunately for Arnold Schwarzenegger’s character, Adam, he gets mixed up in the whole thing and becomes a target for assassination.
Adam is a middle-aged family man who runs a small helicopter business ferrying people from the city to the mountains where they can do things like snowboard or hike. Adam also employs a co-pilot named “Hank.” One day, Drucker’s people call Adam and hire him to take Drucker to the mountains for a brief ski trip. Before they depart, one of Drucker’s goons makes Adam and Hank use the brain scanning machine and submit DNA samples, lying to them that the brain scanner is a vision test machine and that a drop of blood is needed to make sure they aren’t on drugs. After all, this is the richest guy in the world they’re going to be carrying on their helicopter, and special precautions need to be taken.
At the last minute, Adam pulls out of the job and he tells his co-pilot Hank to fly Drucker for him. Hank does it, and right after they land on the mountain, a Christian extremist who somehow knew in advance Drucker was going there shoots them both dead and runs away. Drucker is able to make an emergency phone call to his goons right before he dies, and they scramble to enact his living will instructions. The film doesn’t show this, but they recover the two dead bodies from the mountain and use the secret cloning lab and brain scan data to clone them in two hours. Unfortunately, a major foul-up happens when they mistakenly clone Adam instead of Hank. Instead of looking at the pilot’s corpse, realizing it was Hank, and then cloning Hank, they just looked at the paperwork, saw Adam listed as the pilot for that day, and cloned him. Gross incompetence is a recurring trait among Drucker’s henchmen and it ultimately proves his undoing.
The henchmen program Adam’s newly made clone with Adam’s brain scan, and then dump him, unconscious, in a taxi and send it to the mall. When he wakes up, he doesn’t realize he’s a clone and just brushes off the fact that he can’t remember the last several hours of his day. No matter. Clone Adam goes shopping. The Original Adam is running errands elsewhere in the city and doesn’t realize he now has a clone. Both Adams are planning to go home to their family house that night.
Meanwhile, Drucker’s clone is having a meeting with his goons at his company headquarters building, surely upset over “his” murder a few hours before, when he realizes his henchmen mistakenly cloned the wrong pilot. He quickly grasps how disastrous this is, since Clone Adam will bump into the Original Adam, they will realize one of them is a clone, they will go to the cops, the media will announce that a human has been illegally cloned, and Drucker will be implicated since he runs a cloning business and hung out with Original Adam the same day the latter was cloned.
Drucker orders his henchmen to intercept Clone Adam before he gets home from the mall and kill him. During the confrontation, Clone Adam kills two of them and gets away. In spite of making two catastrophic mistakes in less than 12 hours, Drucker has these incompetent, dead henchmen cloned to serve him again. It’s stunningly poor judgement for the richest man in the world. I won’t go over every plot point after that, but the incompetence of Drucker’s henchmen and Adam’s ability to out-think and kill them gets inadvertently funny.
At the end of the film, one of Drucker’s henchmen accidentally shoots him in the stomach, fatally wounding him. Drucker then shoots the henchman in revenge, and with his dying breaths, Drucker starts making a clone of himself. One of Drucker’s other henchmen then accidentally shoots the cloning machine, causing Drucker’s clone to come out deformed and incomplete, and rendering it impossible to make any more clones to fix the problem. The exploding cloning machine also kills a third henchman by accident. Drucker’s deformed clone lives a few minutes before dying from something else.
In this film universe, people also die from being punched in the face or from the stereotypical “headlock movie neck snap” (if it were really that easy to break someone’s neck, wouldn’t it be happening all the time in real life?). It’s really silly, and The 6th Day got bad reviews for a reason.
Cloning’s centrality to the movie’s plot was clearly inspired by cloning of Dolly the Sheep, which happened just four years before the film’s release. While there are brief moments in The 6th Day when the ethics of cloning were discussed somewhat evenhandedly, in the end it degenerates into an action flick full of black-and-white Good Guys and Bad Guys. The pro-cloning people are all murderous sociopaths, and we cheer when Adam kills them all and blows up the secret cloning lab in the end. The preexisting biases of the audience–that human cloning is unethical, dying is a good and noble thing, and using technology to live forever is evil–are just confirmed, and no one is pushed from their comfort zone. The building full of bad people just explodes in a fireball.
I think The 6th Day was a forgettable film with a convoluted plot, overly simplistic characters, and unrealistic plot developments. Arnold Schwarzenegger’s salary clearly gobbled up a huge chunk of the movie’s budget, forcing corners to be cut in every other aspect of the film: The rest of the cast was B-list or worse (except for Robert Duvall, who was clearly not engaged in his role), and the cinematography was little better than a made-for-TV movie.
Analysis:
The 6th Day was released in 2000, and in the opening text crawl, the timeframe is ambiguously described as “The near future.” However, in a DVD featurette, Arnold Schwarzenegger supposedly says it takes place in 2015. The movie contains an assortment of technologies, some of which already exist, some of which we won’t have for 20 to 50 years, and some of which we may never create. As such, I think it’s safe to say it doesn’t accurately depict any specific moment in the future or past, so it will be no use for me to compare it to a particular year of reality (and it’s arguable whether the canon material provides a specific year, anyway), so instead, I’ll judge when (or if) the different technologies are likely to come into existence.
People will clone their dead pets. The film’s chief antagonist–Mr. Drucker–runs several large businesses that make use of cloning technology. One of them is called “Re-Pet,” and is a national chain store where people get their dead pets cloned. This prediction basically came true in 2007 when a South Korean company called “Sooam Biotech” cloned its first pet dog for a customer (the very first dog clone was made in 2005, but was made for scientific rather than commercial purposes). Since then, they’ve cloned around 600 more dogs, including a police rescue dog that searched for survivors at the Twin Towers wreckage. Other pet cloning companies have also been founded, though Sooam seems to be getting most of the global business.
Of course, I say the movie’s prediction has “basically” come to fruition because some aspects of it have yet to be realized. In The 6th Day, pet cloning was a mainstream practice that was cheap enough for upper-middle-class people like Adam (he owned a successful small business and had a nice house and antique car) to afford. Today, it costs $50,000, which is too high for anyone but a multimillionaire to casually pay for as Adam did. It should be said that the high cost of pet cloning is surely thanks in part to the low demand–if there are few orders for a product, then the firm supplying it won’t be able to take advantage of economies of scale, and low profit potential will discourage other firms from entering the market and driving down prices through competition.
The cost-performance curve of cloning procedures is surely sloping downward over time, but I can’t find any good data that I can graph and use to extrapolate a future year when cloning a dog will cost, say, $5,000 in today’s money so that average guys like Adam could afford it. For sure, the price isn’t dropping at Moore’s Law rates, since if it were, it would already be that cheap by now. This poses a major problem for me in assessing when this prediction and the movie’s other predictions about other aspects of cloning will be feasible.
I actually emailed two animal cloning companies asking for cost data, but got no response. In lieu of that, I’ll have to do my own crude estimates based on internet research. (BTW, if you can come up with better data than this, PLEASE feel free to send it to me)
The first cloned dog was created in 2005. While the company didn’t discuss its expenses, an outside expert estimated it cost more than $1 million. Much of the money was spent doing trail-and-error experiments until, after many failures, they found a cloning technique that worked. (Source: https://www.nytimes.com/2005/08/04/science/beating-hurdles-scientists-clone-a-dog-for-a-first.html) For that reason, it’s a cost outlier.
If we plug those three cost figures into a data chart and fit an exponential regression line to it, we get this:
If the rate of cost-performance improvement continues, it will cost $5,000 to clone a dog in the late 2040s. Again, I stress the coarseness of this estimate and the scarcity of data. However, I think that the sentiment is correct, in that pet cloning won’t get cheap enough for most people to afford until the distant future.
People will clone organs to replace their damaged original organs. Drucker’s human organ cloning business is only briefly mentioned in the film, which is sad since it stands out as an application of cloning that few would consider unethical. About 8,000 Americans die each year waiting for organ transplants, and others die after their bodies reject organ transplants because they have different DNA. Had the life saving value of this for people in need of new organs been explored more, the film would have been more intelligent and Drucker could have been a more sympathetic character.
As with pet cloning, technically this prediction came true in 2006 when the first human organs (urinary bladders) were made from cloned tissue. However, that was only doable because bladders are so simple (basically just elastic bags), and therapeutic cloning still isn’t good enough to make complex human organs like kidneys and hearts. I think it we’ll have to wait until the end of this century for that.
Refrigerators will monitor their contents and help you order new products as the old ones run out. Early in the film, before Schwarzenegger gets into all this trouble with sociopaths and clones and whatnot, we see the start of a normal day for him. He wakes up, goes downstairs to the kitchen for breakfast, and the display built into the door of the refrigerator warns him that it’s running low on milk, and asks him to push a “Yes” button if he wants to order more. That means the refrigerator is smart enough to know what’s inside of it, and is connected to the Internet so it can order things from retailers. This could be built today with existing technology.
“Smart refrigerators” with built-in interactive displays and WiFi are already commercially available, and we already have push-button instant online ordering. If the refrigerators had computers and cameras inside of them, pattern recognition algorithms could let the refrigerators accurately identify their contents, along with the freshness of those contents and how full their containers were. I don’t see how identifying a jug of milk should be a harder visual problem for computers than identifying any number of other objects they’re already able to identify with high accuracy, like letters of the alphabet, human faces, or common animals. If anything, food and beverages should be easier to recognize since there’s a more limited universe of things people put in their refrigerators, and because the packaging usually has writing on it describing what it is. This gets super easy when the packaging has a barcode.
If used the right way, this technology could significantly reduce food waste and improve peoples’ lives by serving as a sort of “automatic grocery list” whenever they went to the store, and by suggesting meals based on what ingredients were available and what was nearing its Use-By Date.
Biological tissue scaffolds will be used to quickly make clones. Drucker’s companies are able to make human and animal clones in only two hours because they keep full-body, DNA-free “tissue scaffolds” ready for use, floating in pools of preservative liquid. These generic bodies are called “blanks,” and when a clone is to be made, one of the blanks is infused with the original human or animal’s DNA, and rapid tissue growth is then stimulated. This is an idea that makes some sense, but because each human has unique body proportions (skeleton, musculature, organ shapes), there’s no way a single “blank” human body could be used to clone anyone and everyone.
Also, a human body contains tens of trillions of cells, and rapidly implanting the donor’s DNA into each of those in a blank would require technology that is several paradigm shifts ahead of what we have now. Additionally, the DNA would have to be migrated without damaging any of it in the process, unless you wanted lots of the clone’s cells to quickly die or become cancerous. I’m not even sure if this is possible with ANY level of technology. Pulling off this feat might require Star Trek levels of technology, and in that case, you probably wouldn’t need blank bodies since you could just quickly construct custom-made bodies using raw materials (like powder) in a vat full of bubbling liquid.
Using tissue scaffolds to help grow an adult human clone over the course of two months instead of two hours might be doable by the end of this century. A slower process like that would allow the DNA replication and tissue differentiation to happen with a much lower risk of error. A smaller number of stem cells that had been carefully injected with the donor’s DNA, and then tested to ensure no errors had occurred, could be implanted on something like a full-body organic scaffold and stimulated to rapidly grow and multiply. As I said in my 5th Element review, the subsequent growth process would have to be very closely monitored and regulated by machines.
Ultimately, it will probably be faster and easier to dispense with organic bodies, and to manufacture robotic “clone bodies” and then just implant the original person’s brain into them. The robotic bodies could be made to look outwardly identical to the person’s original, human body, but underneath, the bones, muscles and organs would be made of synthetic materials. The only organic components might be the nervous system, which would interface with the person’s brain. The squishy androids from the Aliens movies and the semi-organic T-800s from the Terminator movies should give you some idea of the hybridization I’m imagining.
We might actually invent ways to make robotic, adult clone bodies before we invent ways to rapidly make organic, adult clone bodies. Synthetic materials are just much easier to work with.
We will be able to read and copy people’s minds using technology. In the film, Drucker’s companies have an advanced tabletop device called a “syncorder” (SIN-cord-ur) that is able to scan a person’s brain in a few seconds and capture all of their memories and personality traits as digital data. Users stick their faces close to the machine and the scan is done through two lens-like protrusions that interface with the eyes. This type of technology won’t exist for a hundred years, and possibly never.
The things that truly make you “you” are indeed contained in your brain, in the form of neural structures and synaptic connections that form your memories and personality traits. Appropriately, this unique brain network is called the “connectome.” However, we’re incredibly far away from understanding the physical mechanics of this (e.g. which brain structure corresponds to which type of memory), let alone being able to make a brain scanner with good enough resolution to see the relevant cell-sized (or smaller?) physical features.
If it is possible to read someone’s mind, it will be much more invasive and time-consuming than the five-second syncording process shown in the film. Imagine something more along the lines of having to stick your head into a hole in a giant scanning machine for several, multi-hour sessions while you are guided through different thought exercises designed to evoke certain emotions, memories and cognitive operations while your brain activity is monitored. Or, if nanomachines can ever be built (another big “if” that we’re still not sure the laws of physics allow), having billions of them injected into your brain to map the shape of each cell. It might just be impossible.
However, while brain scans might prove impossible or possible only in the distant future, I think within two decades, we’ll be able to make very accurate digital “copies” of people that mimic their personalities. Mass surveillance will also effectively mean that many of your life experiences will be recorded, and hence, your memories could be mostly deduced by machines. I say “mostly” because human memories are frail and subject to all forms of manipulation, so your unique set of memories aren’t an accurate catalog of your life experiences. Machines would have to, by observing you and your brain activity, figure out where your mental distortions and gaps were.
An interesting consequence will be the rise of immortal, digital avatars of all humans. Long after a particular person died, a computer program or lookalike robot that faithfully mimicked their behaviors, personality, speech, and that could describe the same memories would like on. Far from being an automaton, such a machine could be endowed with artificial intelligence, contoured to reflect the intelligence and psyche of the original human. This would raise new questions for us about the nature of death and individual identity that I can’t explore here.
We will be able to implant memories and personalities into cloned humans. In the film, the syncorder machines are like CD burners: they can copy memory files from people and also implant memories into people. In both cases, you just need to look into two appendages and push a button. When Drucker’s goons clone Adam, then implant his unconscious clone with Original Adam’s memories using the machine. Since Original Adam was only syncode-scanned a few hours before, Clone Adam doesn’t have enough missing time in his short term memory to make him suspicious anything strange happened aside from an afternoon nap. I doubt we’ll be able to implant memories in people for 100 years, possibly never. Doing so would require the ability to physically alter the brain at the cellular and possibly intracellular levels. The only technology I can think of that might be able to do that is nanomachines, and progress making those is going at a snail’s pace. Some scientists believe that just can’t be made.
The standard sidearm will be a laser/plasma pistol. In the movie, all the bad guys carry energy pistols that fire glowing bolts of some sort instead of bullets. They also don’t make the standard “pop” or “crack” sounds of firearms, and instead make indescribable “Zhweee” noises. When fired, the guns produce very large muzzle blasts, and they cause burn damage to the humans and hard objects that they hit. The bolts are more damaging than handgun bullets, but the energy pistols also seem to have slower rates of fire than gunpowder handguns. Almost every time someone shoots a person or object with an energy pistol, I can’t see how gunpowder handguns like Glocks wouldn’t have done the job adequately. The only exception is when two henchmen use their energy pistols to shoot down one of Adam’s charter aircraft.
I don’t think directed energy pistols like this are technologically feasible, so they won’t ever be common, and even energy weapons as big as large rifles will forever be rare. For why, read my Terminator review.
Bans on human cloning will be enforceable. Drucker has to keep his human cloning lab secret because human cloning is illegal. A few brief lines of dialog explain that the ban has existed for a few years, and was put in place because the first human cloning attempt failed in some grotesque way.
National bans on cloning could be sidestepped by going to other countries where it was legal, and enacting an international ban is unlikely since there is profit to be made by providing the service. For this reason, people evade national-level restrictions on abortion, sperm donation and IVF today. The 6th Day correctly shows that elected politicians will help bring down anti-cloning laws once they realize they can personally benefit from it.
And as the global drug war clearly shows, even if an international ban existed, the procedure would still be available at underworld labs and clinics, particularly in countries with weaker rule of law. This problem would only worsen with the passage of time as cloning equipment got cheaper and the technical know-how got more common.
To stop human cloning, laws will criminalize the clones themselves, and government forces will kill clones upon discovery. Several times in the movie, it is mentioned that the original cloned human was “destroyed,” and that the law against human cloning also directs the government to kill clones. And after discovering that an impostor (actually Original Adam) is at his house, Clone Adam (who at that point in the film doesn’t yet realize HE is the clone) plots to kill him, since “There’s no law against it” and “He’s not human.”
I can’t see how a law authorizing the murder of cloned humans would ever be enacted in a country that respected human rights. The 6th Day was filmed in Vancouver, and while the location of the fictional setting was kept ambiguous, it was clearly set in the U.S. or Canada. Legally and culturally, neither country would ever let adult humans be killed merely because they were clones. National bans on human cloning procedures are entirely realistic, as are harsh punishments for doctors who do the procedure, but the clones themselves would be held blameless.
People will know what it’s like to die. For comical effect, there are several instances where Drucker’s cloned henchmen talk about their bad memories of Adam killing their previous selves. One henchman who gets his torso run over while trying to kill Adam in a car chase complains of phantom chest pains, even though his body bears no injuries since it is a healthy clone of the dead original. He also seems psychologically scarred by the implanted memories of his traumatic death. At another point, a different henchman says to the group: “Knock it off, we’ve all been killed before.” I think humans and machines will someday be able to speak of death in the past tense like this.
Once human cryonics and other forms of induced stasis become possible, people will medically die and then be brought back to life years later. In every sense of the word, they will have experienced death, and might have memories right up to the moment of expiration.
Also, if the sort of brain implant technology analyzed in my Aeon Flux review is ever invented, then people in the process of dying will be able to directly share their sensations with other humans and with machines, so you could know what death feels like remotely.
In addition, because machines are more resilient and more easily repaired than biological life forms, I think it will be common for intelligent machines that have been “killed” to be brought back to life in repair shops. It would be little different from removing your hard drive from your wrecked PC and installing it in a new PC.
Let me make a few predictions about this: Death will be so traumatic that it will be common for revived humans not to remember the actual event or the moments leading up to it. Humans who experience it remotely through brain implants will by turns be horrified (ten times worse than watching an internet gore video) or find that it feels no different than falling asleep. Machines will most likely have crystal clear memories leading up to the moment of death, with unpredictable effects on their psyches. Death itself will literally feel like nothing. Everyone will understand it is just a state of nothingness, like a dreamless sleep or the same way things were for you before you were born. The notion of there being an afterlife will become even less credible as the number of “formerly dead” people grows and they all describe the same nothingness.
The moods and actions of animals will be controllable with technology. In one scene, Drucker’s henchmen abduct Adam’s wife and daughter in order to blackmail him. They make use of remote-controlled Doberman dogs for this. One of the henchmen uses something like a smartphone app to remotely issue commands to the dogs, which they receive through high-tech collars. Glancing at the smartphone screen for a second, the henchman appears to have push-button options to grossly control the dogs’ behavior, for instance telling them to “Stop” or to “Attack.” The dogs corral Adam’s family into a corner, and then the henchmen arrest them.
This is already possible using existing technology found in dog training “shock collars.” Using electric shocks of varying intensity, vibrations, and sounds (some of which are outside human hearing ranges), the collars can help humans to train dogs and to control their behavior.
The long-term implications of this technology are interesting to ponder. At some point, it will be possible to cheaply manufacture shock collars embedded with hi-res cameras, microphones, GPS trackers, and other sensors that monitor the animal’s surroundings and physiological status. At minimal cost, it will become possible for humans to attach collars to all pets and even millions of wild animals. Highly accurate estimates of animal populations, health, and migration patterns would become possible. Encounters between humans and dangerous animals like alligators and bears could be headed off in advance if the animals’ GPS coordinates were known and all humans within a certain radius were warned of their presence via automated texts to their smartphones. Poaching would become much harder if any large wild animal had cameras on it.
The collars themselves will also shrink in size and weight, as is generally the trend for all types of electronic devices. Eventually, they could very well evolve into implants that the animals wouldn’t even be aware of, and might directly interface with their nervous systems.
Robots and AIs will eventually provide us with practically free and almost unlimited amounts of labor (see my I, Robot review), meaning it will become feasible to tag billions of animals at low cost, to continuously monitor them, and to issue gross commands to them. This seemingly crazy vision of a “tamed wilderness” is just an extension of two other broad, long-term technology trends: 1) the rise of mass surveillance and 2) the fusion of organic life with technology. I think it’s also a clear stepping stone to a technological “hive mind” or single consciousness.
While most people would be quick to point out potential misuses of this technology, the potential good uses are very compelling. If every animal on the planet could be continuously monitored and controlled, we could end or at least sharply reduce animal suffering by ending predation and singling out unhealthy animals for veterinary treatment. Violent encounters between humans and animals could also be eliminated. Animal reproduction rates could also be carefully controlled, keeping ecosystems in balance. Humans, the species that has caused the most suffering and damage on this planet, could repay their debt by inaugurating a new age of empathy and harmony. Only we can make technology, so only we can do this.
Finally, I’ll take the next logical step here and get myself into trouble by suggesting this same technology might someday find wide scale use among human beings, and it might actually make the world better. Like animals, humans sometimes get out of control and need various forms of “help”, and, if things could be managed responsibly, I could see how prods from a brain implant or something could help people behave civilly and avoid self-destructive behaviors and thinking.
Due to heavy losses, the Russians are increasingly sending obsolete BMP-1 armored vehicles to fight in Ukraine. It’s inferior in every way to the newer BMP-2. Russia knows of ways to upgrade the BMP-1’s weapons to make it more effective, but lacks the money to do so. https://youtu.be/l5arYlXSVQA
The Russians are so hard up that they’re making tanks out of mixes of old spare parts. In the photo, that weird structure jutting up from the top of the vehicle is actually a turret from a small Soviet warship. The turret and its two heavy machine guns were made in the 1950s, and it was pulled out of some rusted hulk of a ship and plopped down into the top of an MT-LB tank (itself obsolete) that was missing its own gun. https://youtu.be/v7NCo9T54U8
Critical parts shortages have forced Russia to send obsolete T-54s to fight in Ukraine. Russia might have 1,000 better T-72 tanks in reserve, but it can’t send them to fight at once because they have to be fixed up first, and there’s a bottleneck of some kind involving one or a few types of components. For all their deficiencies, the T-54s recently seen on the move towards Ukraine are fully operational. https://youtu.be/uRboVa5zyUk
To be fair, other countries have been forced to raid military museums for parts to use in frontline military equipment. https://youtu.be/B372GirZ3Cs
Russia’s winter offensive has failed to change the strategic balance and has just killed and exhausted large numbers of troops on both sides. In proportion to their population sizes, Ukraine and Russia have suffered about equally. https://youtu.be/qPhycuLAtaw
It’s all the more remarkable since the MiG-23 has a poor safety reputation even under normal conditions. Consider that the jet was built to replace the older MiG-21 fighter, but was retired from service sooner than the MiG-21. https://youtu.be/A4LK6mtmZ3E
Recently, some interesting new guns–including this revolver/shotgun–have been invented, but whether they are BETTER than older, more common gun designs is questionable. Maybe “Late Stage Capitalism” has taken over the gun industry. https://youtu.be/bvtLdKfsvSk
‘The fission weapons described above have a theoretical limit to their yield, and the largest such weapon ever developed had a yield of 500 kilotons. Fusion weapons have no such upper limit’ https://ee.stanford.edu/~hellman/sts152_02/handout02.pdf
The Lathe of Heaven was written in 1971, set around 2002, and described a planet wracked by extreme heat and industrial pollution, and in a state of near-famine due to overpopulation at 7 billion people. https://en.wikipedia.org/wiki/The_Lathe_of_Heaven
The EIA says that, in spite of the rise of electric cars, demand for gasoline and diesel fuel will stay high until at least 2050, and the U.S. will remain a net oil exporter until then. We’re never going to run out of oil, as countless “experts” and sci-fi authors predicted from the 1970s to the 2010s. https://www.eia.gov/todayinenergy/detail.php?id=55840#
Bill Gates says the recent pace of AI advancement has surprised him, that the chatbots the public has access to now (like ChatGPT) actually use technology that is a generation old, and that he’s privately interacted with much more advanced variants. He also says the chatbots that are being created aren’t threats to humankind, and probably won’t lead to true AGI. https://www.ft.com/content/4078d407-f021-464a-a937-11b41a4afb91 https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
Economist Bryan Kaplan just lost a public bet that no computer would be able to pass one of his Economics midterm tests (he’s a professor) before January 2029. GPT-3 got a “D” on the test this January, but GPT-4 just got an “A.” https://betonit.substack.com/p/gpt-retakes-my-midterm-and-gets-an
A research team at Microsoft claims that GPT-4 has some elements of an artificial general intelligence (AGI). It’s able to do things that exceed what is in its training set of data, meaning it has some ability to reason and to make inferences. https://arxiv.org/abs/2303.12712
Here’s a needed reality check on “AI.” While the systems we now have are powerful and can be made much more so, they’re not actually “intelligent” and never will be. https://youtu.be/GzmaLcMtGE0
Elon Musk thinks humanoid robots may someday outnumber humans. I think robots designed for labor will outnumber humans eventually, though its unclear whether those of them that have humanoid body layouts will be more numerous than we. https://finance.yahoo.com/news/elon-musk-says-humanoid-robots-221414098.html
A computer program called “VALL-E X” can allegedly translate recordings of spoken words from English to Mandarin, while preserving all the unique vocal characteristics of the speaker, including their accent. I have predicted something like this would have to wait until the 2030s to be invented! https://vallex-demo.github.io/
An extinct civilization that reached our level of technology before collapsing would have left enough evidence of its existence for us to have found it by now, even if they died out millions of years ago. If the extinct civilization had merely reached Industrial Revolution levels of development within the past several tens of thousands of years, we would have also found evidence. The only plausible type of yet-undiscovered “lost civilization” is a pre-Ice Age group of people about as advanced and as numerous as the Celts who built Stonehenge. Their impact would have been small enough that all traces of them could have been wiped out, or at least obscured so much that we have yet to find the evidence. While the discovery of such an extinct group would be interesting, it wouldn’t revolutionize archaeology or provide us with new types of science or technology. https://astralcodexten.substack.com/p/against-ice-age-civilizations
‘A predatory songbird, the Northern Shrike sits quietly, often in the top of a tree, before swooping down after insects, mice, and small birds. It kills more than it can eat, impaling the prey on a thorn or wedging it in a forked twig. On lean days it feeds from its larder.’ https://www.borealbirds.org/bird/northern-shrike
Men with high testosterone are more aggressive, less reliable, and likelier to abandon their children. Sons who grow up without fathers are likelier to have elevated testosterone as well, and then to go on to be absent fathers like their own dads. This is a case where genetics, biological development (epigenetics?), and social factors amplify each other. https://www.economist.com/science-and-technology/2022/06/01/fatherless-sons-have-more-testosterone
A woman who managed to led a normal life in spite of being born without a large portion of her brain shows the organ’s remarkable ability to rewire itself. I wonder if genetic path dependence has left humans saddled with brains that are fundamentally inefficient in some way(s). It would be interesting to see an AGI design a perfect organic brain from scratch. https://news.mit.edu/2023/studies-of-unusual-brains-reveal-insights-brain-organization-function-0221
The human limit: ‘Even heat-adapted people cannot carry out normal outdoor activities past a wet-bulb temperature of 32 °C (90 °F), equivalent to a heat index of 55 °C (130 °F). The theoretical limit to human survival for more than a few hours in the shade, even with unlimited water, is a wet-bulb temperature of 35 °C (95 °F) – equivalent to a heat index of 70 °C (160 °F).’ https://en.wikipedia.org/wiki/Wet-bulb_temperature
Putting aside all the jokes about Russia’s underperformance and the grim videos of its men dying on the battlefield, they have massively built up their forces to 300,000. Even if their training is mediocre and half of their equipment is obsolescent, they’re still a formidable force. Ukraine’s generals predict a major Russian attack by the first anniversary of the invasion, February 24. https://foreignpolicy.com/2023/02/08/ukraine-russia-counteroffensive-abrams-tanks-putin-war/
Russia’s planned increase in the size of its military to 1.5 million people by 2027 will fail because the country lacks enough young men for it. The country’s population has been shrinking and graying for decades now, and the problem accelerated thanks to COVID-19 and to the Ukraine War causing large numbers of its younger people to die or flee. https://finance.yahoo.com/news/demographic-challenges-weigh-russia-military-200000752.html
At a commemoration of the 80th anniversary of the Battle of Stalingrad, Putin said “We are again being threatened by German Leopard tanks.” https://www.bbc.com/news/world-europe-64502504
Small bomber drones seem more effective than they really are due to survivorship bias: we don’t get to see the videos where the attack fails or the enemy shoots down the drone. https://youtu.be/AlpZf1hpQYM
It’s amazing how hamstrung the U.S. submarines were by their defective torpedoes and bureaucratic stubbornness in fixing them for the first half of WWII. https://youtu.be/KSDtGXW7J7I
Fighter plane dogfights are incredibly rare in real life, and when they do happen, the opposing planes only get close to each other for brief instants. Prolonged, tight-turning engagements only happen in movies. https://youtu.be/cbEBr0DDKWQ
The concept behind CAMELEON active camouflage is simple, and though it was never used, I believe it will return once the technology is better and cheaper. https://youtu.be/zLdNeatXCvE
‘A pure fusion weapon is a hypothetical hydrogen bomb design that does not need a fission “primary” explosive to ignite the fusion of deuterium and tritium, two heavy isotopes of hydrogen used in fission-fusion thermonuclear weapons. Such a weapon would require no fissile material and would therefore be much easier to develop in secret than existing weapons.’ https://en.m.wikipedia.org/wiki/Pure_fusion_weapon
A man used ChatGPT to auto-generate conservative responses to liberal Twitter users in an argument about Food Stamps. The liberals were infuriated and had no clue they were dealing with a machine. It could have kept them tied up arguing forever. https://bullfrogreview.substack.com/p/honey-i-hacked-the-empathy-machine
A good example of how humans unconsciously move the goalposts for “true intelligence” higher whenever machines get smarter. ‘When I showed my friends the sonnet by ChatGPT, they called it “soulless and barren.” Despite following all the rules for sonnets, the poem is cliche and predictable. But is the average sonnet by a human any better? Turing imagined asking a computer for poetry to see if it could think like a person. If we now expect computers to write not just poems but good poems, then we have set a much higher bar.’ https://www.washingtonpost.com/books/2023/02/13/ai-in-poetry/
The strongest military will someday be the one that totally automates itself to make the more efficient use of its resources, to design and field the best weapons, and to employ the best strategies and tactics. If the DoD still has a lumbering bureaucracy in 50 years that slows down and messes up every idea suggested by its military AIs, it will lead to disaster. Of course, turning over all military decisions except perhaps the very top ones could also lead to disaster. If we don’t do it, though, China, Russia, or some other country will. We’re locked in a race with no way out but to run faster and faster. https://www.wired.com/story/eric-schmidt-is-building-the-perfect-ai-war-fighting-machine/
‘The T2T consortium used new DNA sequencing technologies and analytical methods to generate and assemble the remaining 8-10% of the human genome sequence. However, the researchers assembled those fragments manually — a process that took this massive and highly skilled team several years to complete. Verkko can finish the same task in a couple of days.’ https://www.genome.gov/news/news-release/nih-software-assembles-complete-genome-sequences-on-demand
‘The Energy Department now joins the Federal Bureau of Investigation in saying the virus likely spread via a mishap at a Chinese laboratory. Four other agencies, along with a national intelligence panel, still judge that it was likely the result of a natural transmission, and two are undecided.’ https://www.wsj.com/articles/covid-origin-china-lab-leak-807b7b0a
By the late 21st century, Earth had become an overpopulated, diseased, polluted nightmare. The small number of super wealthy people escaped by building a large space station in Earth orbit and moving there. The station, called “Elysium,” is a bucolic paradise where everyone lives in a mansion, is protected by robot police, and has a personal rejuvenation pod that fixes any illness or injury when they lie down in it.
The film’s events take place in 2154. Elysium’s only problem is illegal immigration: poor people with major health problems smuggle themselves onto Elysium, and in the few minutes they have from the time their beat-up space ship dumps them onto the grass to the time they get arrested by robot cops, they try to break into a mansion and use one of the rejuvenation pods. Even though Elysium’s government seems to have a handle on the problem since they quickly arrest and deport them all, a government official played by Jodie Foster doesn’t think they’re doing enough, so she has a mercenary named “Kruger” do the dirty work of blowing up illegal immigrant space ships, killing dozens of people at once. After a verbal reprimand from Elysium’s president, Jodie Foster decides to do a military coup.
Matt Damon exists on the opposite end of the spectrum, living in a Los Angeles slum and working a horrible factory job where his boss yells at him all the time and he has no rights. One day, the machine he is in charge of breaks and he has to go inside to fix it. The door accidentally closes behind him and it turns on, zapping him with a dose of radiation that will kill him within five days.
Because Earth hospitals are so poor, his only hope is to illegally immigrate to Elysium to use a rejuvenation pod. He doesn’t have any money, so he can only get a ticket by agreeing to help an underworld crime boss kidnap a rich guy at gunpoint so they can basically steal his ATM pin number by hacking his electronic brain implant (rich people have these). Before Matt Damon goes on this criminal mission, he lets the crime boss upgrade his body with a screw-in exoskeleton kit that gives Damon superhuman strength and his own brain implant.
The job goes bad–Damon’s criminal compatriots accidentally shoot the rich guy in the chest. Instead of trying to render medical assistance, they connect a wire into the rich guy’s head and download his data into Damon’s brain implant. The rich guy dies, it turns out the data is encrypted so the criminals can’t make sense of it, and Kruger shows up and kills them all except Damon, who escapes into the slum.
Matt Damon then becomes the world’s most wanted man because it turns out he has the rich guy’s access codes to the Elysium mainframe, which are super important because they let the user reboot the system and make all humans Elysium citizens. Jodie Foster also wants the codes for her coup.
I won’t spoil the ending, but it’s exactly what you’d expect from Hollywood. I disliked Elysium for its clumsy, excessive moralizing, rushed pacing, and poorly thought out plot. Matt Damon, one of the greatest American actors of his generation, was disengaged in his role and almost looked like he didn’t want to be there. And while some futuristic elements in the movie will probably prove accurate by 2154, like humanoid robots, overall it was totally unrealistic and nonsensical. For example, if rejuvenation pods are the catalyst for illegal immigration, why doesn’t Elysium just give some pods to Earth so the poor people won’t need to go to space and bother them? Why isn’t there a single enterprising rich person on Elysium who sells some pods to Earth to make money for himself? If the people on Earth know that pods exist and know what they do, why can’t they pool their resources to copy the technology and make their own?
Also, before watching this anti-rich people movie, ask yourself how the world got that messed up to begin with. Did it become overpopulated thanks to rich people having huge numbers of kids? Diseased from rich people doing IV drugs and spreading AIDS? Polluted from rich people driving around all X billion cars there are in the world? Did rich people spray paint the buildings in Matt Damon’s slum and throw trash all over it? Absolutely not. If the world ends up as bad as it was in the film, it will be thanks to the bad decisions of billions of people, 99% of whom aren’t rich. In summary, in trying to make a commentary about the present, Neill Blomkamp (ironically, a multimillionaire) sacrifices accuracy depicting the future, and leaves us with a cool-looking but hollow and forgettable film.
Analysis:
The world will be ruined. In the film, Los Angeles was a gigantic slum, and these scenes were shot in the real-life slums of Mexico City. Aside from advanced flying vehicles, military exoskeletons and robot police, Earth’s technological state appears inferior to what it is today. This is unrealistic. By 2154, cities like L.A. will probably be much nicer than today, and extreme poverty will probably be eliminated. The historical record shows that living conditions have been improving across the planet as a whole since the Enlightenment, and the trend is unlikely to change.
There will barely be any white people in Los Angeles. Aside from Matt Damon and a few colleagues at his factory job, no white people are shown living in L.A. This will prove an accurate depiction. Whites became minorities in L.A. and California in the 2010s, and nationally will be minorities around 2045. Their share of the L.A. county population is forecast to keep declining for the foreseeable future.
By 2154, nonwhites, including mixed race people, will comprise the overwhelming majority of the U.S. population. By that point in the future, medical immortality, decreased fertility among all races, and lessened need for immigration thanks to machines doing all the work will cause the racial makeup of the planet to stabilize (this is why I don’t think white people will ever “go extinct” as racist alarmists contend).
Well before 2154, the large population of mixed race people and widespread use of genetic engineering to give people stereotypically “white” traits (light-colored eyes, hair and skin) will seriously scramble our future concept of race. Genetic engineering will also be used to add unnatural traits to the genepool, like orange hair and purple eyes, resulting in significant numbers of humans not resembling any race. Some human beings will have also upgraded themselves and fused with their technology so radically that they won’t belong to any race, and will find the concept irrelevant to their self-identities.
The rich elites will still be overwhelmingly white. Elysium is 90% white, in contrast to the impoverished Earth. While disproportionate wealth and power will stay in the hands of white Americans for generations even after they become minorities, and Europe will also retain its outsized wealth for some time, a lot will happen over the next 141 years to level the playing field. At the very least, all East Asian countries will attain Western standards of living and income. More likely the whole world will have caught up, and in no small part thanks to machines becoming common everywhere and taking over work from humans. In making almost all the Elysium residents white, director Neill Bloomkamp again tried to make a social statement in terms we are familiar with today, but at the expense of realism.
Robots will be everywhere. The film featured robots cops, parole officers, doctors, and emergency workers that were just as capable as humans. This will come to pass well before 2154. However, I disagree with the movie’s depiction of these robots all being mechanical-looking, with all their gears and metal surfaces exposed, and I don’t think they’ll have stereotypically machine-sounding voices. They will be more refined, and some will be indistinguishable from humans (androids). Even today’s technology allows machine voices to sound almost the same as natural human voices, and before 2040, they will be indistinguishable.
Humans will still work in factories. Aside from that fact that it makes a futuristic product (robots), Matt Damon’s workplace is the same as a modern-day factory: Human workers in overalls show up every morning and work on the crowded shop floor, pushing buttons, pulling levers and pushing carts full of parts around. The absurdity of this is striking: If the factory is making intelligent, dexterous, humanoid robots, why don’t the managers replace the human workers with some of their own robots?
Labor-intensive factory jobs like those in the film will disappear in developed countries around the middle of this century. Small numbers of highly trained human workers will remain in the factories to oversee machines, but they won’t do grunt work like Matt Damon.
By the end of this century, no one on planet Earth will do labor-intensive factory work, and most factories will be 100% automated. If you think this can’t happen because humans will always be needed to fix the machines, you are wrong. As I said in my review of Terminator, there’s no reason machines won’t eventually be able to build and fully repair each other.
Medical technology will be able to fix almost every problem. To fix any ailment, the rich people need only lie down in a rejuvenation pod and wait for its mechanical “arms” to wave back and forth over them. In this way, even deadly conditions like cancer are fixed in a few seconds. Kruger’s horribly destroyed face is thus reconstructed after a battle with Matt Damon. Curiously though, the machines can’t correct the cellular-level damage that causes old age, and there are some old-looking people walking around Elysium.
This level of technology will exist by 2154, though most health problems will still take much longer than one minute to fix. Massive trauma like having your skull crushed will be impossible to fix, as will reviving people who have been dead and rotting for more than a couple hours. However, diligent use of future medical technologies will be able to keep people young and reverse the aging process.
People will still die of leukemia. A subplot of the film involves the daughter of Matt Damon’s ex-girlfriend. The daughter is about to die from leukemia unless she gets advanced treatment in Elysium. Even though the ex-girlfriend is a nurse and presumably has access to superior medical services since she works in a hospital and has doctor friends, Earth is just so poor and backwards that they can’t cure the daughter. Even though Elysium is hoarding the rejuvenation pods, there’s little reason to assume conventional leukemia treatments wouldn’t be able to cure the disease with over 100 more years of research.
There will be a space station miles in length/diameter orbiting the Earth that can be plainly seen in the sky. Elysium is 37.3 miles wide and orbits 4,000 miles above the Earth. Even in the daytime, the station is visible from the planet’s surface, and its circular shape can be made out. According to other calculations, an object only one mile wide could also be clearly seen if its orbit were the same as the International Space Station, which is a mere 254 miles up.
While the technology and money to build such space objects will be available by 2154, I’m unsure if the investment will actually be made. For one, while it would make sense to build some types of massive objects in space like solar panel arrays and sunshades (to ease global warming), they would be positioned so far from Earth that people on the ground wouldn’t be able to see them.
We’ll be assembling space ships in space by 2154, but I’m not sure if we’ll be doing it in low Earth orbit. The LaGrange Points probably make more sense. Even if we did build them in LEO, I don’t see why any of them would need to be a mile or more in length (for what purpose), nor would any “space factories” that built them need to be that large.
I don’t think the rich will ever move to a giant space station because they decide Earth sucks, but I do think there will be at least one “space hotel” in low Earth orbit by 2154 that caters to rich people. Even that far in the future, rocketing enough material into space to make a mile-wide space hotel will be too expensive, and there won’t be enough customer demand to fill all the rooms anyway.
And while I wouldn’t be surprised if there were one or more “space hotels” in low Earth orbit that catered to rich tourists by 2154, they wouldn’t have enough clientele to justify being a mile or more in diameter. However, I can see a workaround: Massive sheets of Mylar.
Imagine a luxury space hotel that’s similar in size to a cruise ship. It’s basically an elongated box measuring 1,000 ft x 200 ft x 150 ft, which is in the same size range as a real cruise ship. Even in low Earth orbit, it’s still too small to see from the ground. To fix that problem and hence boost the station’s publicity, huge “wings” or “sails” are attached to its sides. Made of Mylar, the sails are very lightweight and compact, meaning it’s affordable to rocket them into space. Once attached to the sides of the station, they’re unrolled and oriented to face Earth, making the station look much bigger. It would kind of resemble a butterfly, with an elongated, relatively compact “core” with very thin, flat accessory protrusions on either side.
The station’s wings/sails would have no functional purpose. While many people would protest plans to mar the sky with such an object, it might be built anyway. NIMBY’s don’t always win.
Robot exoskeletons will exist and will give wearers superhuman strength and endurance. Matt Damon has one of these “grafted” to his body, and it proves invaluable in the many fistfights he has with killer robots and mercenaries, and in the self-extrications he does freeing himself from crashed vehicles and prying apart heavy metal doors that are trying to close on him. These will definitely exist by 2154, but they will not be crudely screwed into wearer’s bodies (during the “operation” where this is done, they don’t even take Damon’s clothes off, so he’s wearing a ridiculous bloody T-shirt UNDER his exoskeletion for the rest of the movie). As I concluded in my review of Edge of Tomorrow, the first combat exoskeletons could make their debut in the 2050s, 100 years before the film is set to happen. With an extra century of development time, they should be significantly better than what Matt Damon had.
Highly refined brain-computer interfaces will exist. In the film, the rich people have small devices sticking out of their heads resembling cochlear implants which allow them to interface their brains with computers. Files can thus be directly transferred between the two. Devices like these will be common by 2154, though they will probably be completely internal, meaning they won’t have parts sticking out from the person’s skin.
Old guns will use new ammo. Matt Damon uses a normal pump-action shotgun to fire a tiny sticky bomb onto a rich guy’s flying car. After the car takes off, Damon remotely detonates it and the car crashes. During the ensuing battle with the rich guy’s two robot guards, Damon kills one of them using a 200-year-old AK-47 firing proximity-fused explosive bullets that are linked to a control computer in a small gun sight.
The concept is clearly borrowed from the XM-25 and shows where the technology will be once refined. I really liked this as it shows high technology being seamlessly incorporated with low technology in a realistic way, and it nods to the fact that the basic gun designs we have today are optimal or close to optimal, so further performance improvements will have to come from peripheral things like better ammo and sights.
By 2154, gun sights will provide a composite picture that intelligently overlays images from several parts of the electromagnetic spectrum. They will have computers that can recognize objects and humans, and visually highlight them for the shooter’s benefit. The scope computers will also have ballistic calculators that move the target reticle based on factors like distance, inclination/declination, wind velocity, air pressure, humidity, and temperature of barrel.
The guns themselves might have self-aiming mechanisms like the Smartgun from Aliens had. A rifle would have a sort of metal “frame” around it, and at several different points, levers and metal cables would connect the rifle to the inside of the frame. By telling those levers and cables to tighten or slacken, the scope could quickly make fine adjustments to where the barrel was pointed, compensating for flaws in the shooter’s aim.
Routine use of highly advanced ammunition incorporating better propellants and features like timed airburst, tandem warheads, steering fins, and mini guided rockets will also make guns more accurate and deadlier against a greater range of targets. The guns of 2154 will also have computers built into them that will link with the user’s brain computer, allowing the person to instantly “know” where to point the weapon to hit the desired target without having to look through a sight.
Combining all of these technologies, the mechanical “guts” of a 200-year-old AK-47 could be used to make a future rifle with incredible capabilities. A better aiming system would double the maximum range at which it is lethal against humans, and make it possible to rapidly shoot the weapon from the chest with the same accuracy as today’s careful sniper shots from bolt-action rifles. The weapon could even shoot down low-flying aircraft, cripple vehicles from long distances with bullets through their vital components like tires and gas tanks, or even disable tanks by destroying their fragile external sensors or sending bullets directly down the barrels of their main guns to hit the shells loaded in them.
Small homing weapons will kill people. During Matt Damon’s botched kidnap attempt on the rich guy, Kruger arrives and kills one of Damon’s accomplices with hand-sized, frisbee-like flying objects that home in on targets that Kruger marks with a small laser. Once they reach their targets, they latch onto them and explode.
Smart weapons like these will be old technology by 2154, and in fact will probably exist within 20 years and take the form of tiny quadcopter drones. Since it might be too hard for them to latch onto targets, especially if the targets are moving or able to swat the drones down, they will probably be programmed to blow up once they get within a few feet from the target, or upon colliding with any part of it.
Facial recognition software will be in common use, even among robots. Throughout the film, surveillance cameras with facial recognition software are used to identify people in public places. Quadcopter drones with cameras also do this when looking for Matt Damon. These will also be old technologies by 2154.
Facial recognition software is already quite reliable, and is sometimes paired with fixed-position surveillance cameras, particularly in higher-tech authoritarian countries like China. However, the software’s accuracy gets worse as the angle at which the camera is placed gets steeper. In other words, a camera six feet off the ground, pointed straight at a person’s face will be able to recognize them easily, but the same camera installed 20 feet off the ground on top of a pole, looking sharply down at the same person so it mostly just sees their hair, will struggle to tell who they are.
For this reason, aerial drones are currently unsuited for autonomously tracking down specific humans. However, that will surely change once more biometric data on people becomes available. Future robots that walk around at ground level with us will recognize us easily thanks to having unobstructed views of our faces and bodies. In the future, you’ll never be a stranger to a robot, or to a human with access to facial recognition software.
Super guns will exist. During the final battle on the Elysium station, Matt Damon finds an advanced automatic rifle with “CHEMRAIL” written on the side and he uses it to kill a bad guy. The gun makes electronic noises when “charging up” and firing, and the bullets are propelled with such force that they easily pass through a wall and literally tear his opponent apart. Canon Elysium literature states that the gun uses electromagnetic forces instead of exploding gunpowder to propel the bullets, and that the bullets leave the gun with 18,000 Joules of energy. That’s powerful, but no unfathomably so: A .50 caliber bullet (used in some sniper rifles and heavy machine guns) has 15,000 Joules.
Small arms with this level of power will be more common in the future because robots and augmented humans that are strong enough to carry and shoot them will exist. A human wearing an exoskeleton could fire such a weapon on full auto like Matt Damon did, but an average person could not. There was a major error in the battle scene since Matt Damon had the CHEMRAIL gun pressed against his shoulder and was holding the handle with his bare hand. His exoskeleton didn’t bear the recoil of the weapon at all. So in real life, had he fired it, the gun’s recoil would have broken his shoulder and wrist. However, had the weapon been directly braced against his exoskeleton, the force would have been transmitted directly into it, and not his body.
There will still be text-based computer interfaces. Throughout the film, characters eschew GUI’s and instead use simple, text-based computer interfaces that resemble MS-DOS. For certain applications, these will still be used in 2154 since they’re optimal. However, reading characters off screens will be unnecessary in most cases since brain implants will let humans instantly “feel” and “know” what the computer wants to tell them, and vice versa. Intelligent machines themselves will be able to wirelessly interface with technology even more directly and easily.
Text-on-screens will, along with devices that operate on purely mechanical principles, probably exist as backups to more sophisticated technology. For example, imagine a wristwatch that can wirelessly transmit the time to your brain implant so you can know with a single thought what time it is. The wristwatch would still have a face with a small LED screen, which you could look at to see what time it was in case the wireless chip in the watch broke.
Shoulder-launched missiles launched from Earth will be able to fly thousands of miles into space. There’s a scene early in the film where a group of illegal immigrants gets into small space ships and flies from L.A. to Elysium. Inexplicably, Elysium lacks the weapons to blow up the ships or at least disable them before reaching the station, so the only way to stop them is to have Kruger shoot them down with surface-to-air missiles. Using a shoulder launcher, he fires several missiles that have enough power to exit the Earth’s atmosphere, overtake the space ships and destroy them. Since the station orbits about 4,000 miles above Earth, the ships were also thousands of miles up when they were destroyed.
No chemical fuel can contain enough energy to propel a small missile that far and fast. The only way such a thing MIGHT be possible is if the missiles had mini nuclear fusion engines, which may or may not be feasible, even with the highest possible level of technology. By 2154, I doubt such weapons will exist.
Helicopter-sized craft will be able to fly back and forth between the Earth’s surface and space. It takes an enormous amount of energy to defeat gravity and to put something into space. Case in point: A 300 foot tall rocket is needed just to put something the size of a large van into orbit. In the film, the van-sized object doesn’t need the huge rocket anymore–four small engines and a small fuel tank can do it.
I think this is probably impossible. The closest we might get is passenger jet-sized craft flying into space with four or five people inside. For a more detailed discussion, see my Starship Troopers review.
Today’s guns will still be in use. At several points in the film, people are shown carrying contemporary guns like AK-47’s and M-16’s. These are used in gun battles with cutting-edge soldier robots and expert mercenaries. By 2154, few of the firearms existing today will still be in use since they will have all long worn-out and been shredded for scrap metal. Guns, like anything else, gradually wear out with use and at some point become dangerous to fire and not worth fixing.
However, the basic DESIGNS for guns are timeless. From a mechanical engineering standpoint, guns like the AK-47 and M-16 are optimized for what they do, and there’s no way to significantly improve upon them. So in 2154, newly manufactured AK and M-16 descendants could still represent the cutting edge of small arms technology.
Certainly they’ll still be effective at killing humans since our skin isn’t evolving to become bulletproof, and even armored machines could still be killed with enlarged versions of those guns designed to fire stronger bullets. However, while the internal mechanics will be conserved, future guns will look at least a little different on the outside.
Personal energy shields that can stop bullets will exist. Kruger has a pocket-sized device that, when activated, creates a semi-transparent, circular shield in front of him. It only lasts a few seconds, but it can block a hail of bullets, even from the super-powerful CHEMRAIL gun.
This is scientifically implausible. There’s no intangible force that could be harnessed to make moving objects with large amounts of kinetic energy instantly stop in midair, as if they’d hit a solid object.
France is donating AMX-10 armored vehicles to Ukraine. They’re probably the least useful “tanks” transferred by NATO. https://youtu.be/CsaHCsZKdRs
NATO still has hundreds of Soviet-era tanks they should donate to Ukraine immediately. Donations of German and American tanks will take longer. https://youtu.be/9FFDGH7PsV4
The West might be giving modern NATO tanks to Ukraine because they expect the war to go on so long that all of Ukraine’s Soviet era tanks will be destroyed before it’s over. https://youtu.be/EXbI6fDhhYo
Another reason not to trust anything Ukraine says about Russia or Putin: ‘A COUP to boot “cancer-stricken” Vladimir Putin from power is already underway, Ukraine’s spy chief has claimed. Major General Kyrylo Budanov, 36, believes the tyrant’s calamitous war in Ukraine will hit a “breaking point” in summer and be over before the end of [2022].’ https://www.the-sun.com/news/5337781/coup-remove-vladimir-putin-underway/
‘India and Pakistan came “close” to a “nuclear conflagration” in February 2019, former US Secretary of State Mike Pompeo has said in his new memoir.’ https://www.bbc.com/news/world-asia-india-64396138
Advances in gun technology are still happening, even if they’re not revolutionary like ones from decades past:
“Bond Arms” invented a lever-action AR-15, marrying Old West technology with that of the modern day. https://youtu.be/53ZEo35Avfk
China’s population has not shrunk since 1961–the last time the country had a famine. While demographers have long predicted that China’s population would start shrinking again, they didn’t think it would start as early as 2021. This means India’s population size may have already passed China’s. https://www.reuters.com/world/china/chinas-population-shrinks-first-time-since-1961-2023-01-17/
Exxon’s scientists made accurate predictions about global warming starting in the 1970s. Those forecasts were kept internal until recently. Publicly, the company’s leadership denied that fossil fuels were causing global warming. Exxon’s estimates say that temperatures will rise another 2 degrees Celsius by 2100. https://www.science.org/doi/10.1126/science.abk0063
The “Atlantic Meridional Overturning Circulation (AMOC)” is usually confused with the “Gulf Stream” during discussions about how global warming might shut down the flow of warm water from the Caribbean region to Europe, making the latter much colder. The real Gulf Steam is impossible to shut down, and while the AMOC’s flow might be vulnerable to human-induced climate change, it probably can’t be terminated, either. https://youtu.be/tnVWUIhQ8dE
CEO of OpenAI, Sam Altman, gave an interview about the future of AI. He says GPT-4 won’t live up to the inflated expectations of tech people and that AGI will arrive gradually, meaning there won’t be a specific day in history when machines became “intelligent.” https://youtu.be/ebjkD1Om4uw
The CEO of a machine translation company called “Translated” has discovered that computers are steadily getting better at translating text between languages, and that they will get as good as human experts sometime in 2027 or 2028. He believes that the task is so complex and requires such a level of knowledge that only an AGI will be able to do it. Therefore, the perfect translating machines we have in 2027 or 2028 must by definition be AGIs. https://translated.com/speed-to-singularity
More on that: ‘It is good to recognize that the market has not priced AI (or fusion power, or the kind of climate change people often warn about, or many other things) into market prices or real interest rates. This tells us that the common knowledge economic impact of such things is, as of yet, not so large. It does not constitute ‘market has well-considered the impact, and rejects it as tiny.’ https://thezvi.substack.com/p/on-ai-and-interest-rates
‘On Sunday, April 2, 1978, a huge bang was heard at Bell Island just before noon. The bang was so loud that people reported hearing it as far as 100 km away. The blast sent a shock wave that shook buildings on the island and killed some animals. The energy release was so powerful that the Vela satellites (which the Americans used to detect nuclear tests by other powers) noticed the phenomenon, now known as the Bell Island Boom.’ https://en.wikipedia.org/wiki/Bell_Island_(Newfoundland_and_Labrador)#Bell_Island_Boom
‘These studies suggest that ending conversations is a classic “coordination problem” that humans are unable to solve because doing so requires information that they normally keep from each other. As a result, most conversations appear to end when no one wants them to.’ https://www.pnas.org/doi/full/10.1073/pnas.2011809118
Here’s a simple and ingenious experiment Henry Cavendish did over 200 years ago to prove gravity existed. https://youtu.be/MbucRPiL92Q
This analysis shows of the Tesla Semi shows its technology and efficiency are adequate, but its price is too high to make financial sense for most truck companies. https://youtu.be/hvg_i0GE0Vo
Here’s a fascinating 2005 Freeman Dyson speech where provides unique insights on a range of subjects. https://youtu.be/8xFLjUt2leM
Here’s a very fascinating Lex Fridman interview with astronomer David Kippling about astronomy, aliens, AI, and other future-related subjects. https://youtu.be/uZN5xjoS6TU
A space telescope with a 1-meter diameter lens (the Hubble telescope’s is 2.4 meters wide) would be able to use a technique called “gravitational microlensing” to see exoplanets in other star systems with incredible levels of detail. Like, it would be able to see individual buildings if any existed. The catch is it would need to be positioned at our Sun’s light beam “focal point,” which is 550 AUs from it. For comparison, Pluto is 39 AUs from the Sun. https://www.technologyreview.com/2016/04/26/8417/a-space-mission-to-the-gravitational-focus-of-the-sun/
A space telescope might also be able to use Earth for gravitational microlensing. Though Earth’s weaker gravity and atmosphere make it less effective for this purpose than the Sun, a 1-meter satellite telescope positioned less than the Moon’s distance from Earth might be equivalent to a 150 meter wide telescope. https://www.centauri-dreams.org/2019/08/12/planetary-lensing-enter-the-terrascope/
There are many different kinds of steel, and one way they are produced is by heating and cooling the alloy in different sequences, causing different types of microscopic crystalline structures to form. Different crystals give the steels different macro-properties. https://www.phase-trans.msm.cam.ac.uk/2008/Steel_Microstructure/SM.html
Wild fish in rivers and lakes contain higher concentrations of manmade “forever chemicals” than thought. Even if they’re still technically safe to eat, doing so in large quantities is probably a bad idea. https://www.yahoo.com/news/eating-one-wild-fish-same-050328070.html
Among the exhumed skeletons of prehistoric farmers, 10% showed evidence of fatal trauma from weapons, and several mass graves were found. This helps to back Steven Pinker’s claims that we are now actually living in the least violent era in human history. https://www.ed.ac.uk/news/2023/violence-was-widespread-in-early-farming-society
Surgery that shrinks your stomach so you eat less and lose weight also decreases your odds of early death from a slew of diseases. As offensive as the idea may seem, it could be in society’s interest to make stomach surgeries free for obese people since the up-front cost of the surgeries would be more than offset by the reduction in later healthcare costs for obesity-related problems. https://www.cnn.com/2023/01/28/health/bariatric-surgery-success-wellness/index.html
If it’s January, it means it’s time for me to update my big list of future predictions! I used the 2022 version of this document as a template, and made edits to it as needed. For the sake of transparency, I’ve indicated recently added content by bolding it, and have indicated deleted or moved content with strikethrough.
Like any futurist worth his salt, I’m going to put my credibility on the line by publishing a list of my future predictions. I won’t modify or delete this particular blog entry once it is published, and if my thinking about anything on the list changes, I’ll instead create a new, revised blog entry. Furthermore, as the deadlines for my predictions pass, I’ll reexamine them.
I’ve broken down my predictions by the decade. Any prediction listed under a specific decade will happen by the end of that decade, unless I specify some other date (e.g. – “X will happen early in this decade.”).
2020s
Better, cheaper solar panels and batteries (for grid power storage and cars) will make clean energy as cheap and as reliable as fossil fuel power for entire regions of the world, including some temperate zones. As cost “tipping points” are reached, it will make financial sense for tens of millions of private homeowners and electricity utility companies to install solar panels on their rooftops and on ground arrays, respectively. This will be the case even after government clean energy subsidies are inevitably retracted. However, a 100% transition to clean energy won’t finish in rich countries until the middle of the century, and poor countries will use dirty energy well into the second half of the century.
Fracking and the exploitation of tar sands in the U.S. and Canada will together ensure growth in global oil production until around 2030, at which time the installed base of clean energy and batteries will be big enough to take up the slack. There will be no global energy crisis.
This will be a bad decade for Russia as its overall population shrinks, its dependency ratio rises, and as low fossil fuel prices and sanctions keep hurting its economy. Russia will fall farther behind the U.S., China, and other leading countries in terms of economic, military, and technological might.
China’s GDP will surpass America’s, India’s population will surpass China’s, and China will never claim the glorious title of being both the richest and most populous country.
Improvements to smartphone cameras, mirrorless cameras, and perhaps light-field cameras will make D-SLRs obsolete.
Augmented reality (AR) glasses that are much cheaper and better than the original Google Glass will make their market debuts and will find success in niche applications. Some will grant wearers superhuman visual abilities in the forms of zoom-in and night vision.
Virtual reality (VR) gaming will go mainstream as the devices get better and cheaper. It will stop being the sole domain of hardcore gamers willing to spend over $1,000 on hardware.
Vastly improved VR goggles with better graphics and no need to be plugged into desktop PCs will hit the market. They won’t display perfectly lifelike footage, but they will be much better than what we have today, and portable.
“Full-immersion” audiovisual VR will be commercially available by the end of the decade. These VR devices will be capable of displaying video that is visually indistinguishable from real reality: They will have display resolutions (at least 60 pixels per degree of field of view), refresh rates, head tracking sensitivities, and wide fields of view (210 degrees wide by 150 degrees high) that together deliver a visual experience that matches or exceeds the limits of human vision. These high-end goggles won’t be truly “portable” devices because their high processing and energy requirements will probably make them bulky, give them only a few hours of battery life (or maybe none at all), or even require them to be plugged into another computer. Moreover, the tactile, olfactory, and physical movement/interaction aspects of the experience will remain underdeveloped.
“Deepfake” pornography will reach new levels of sophistication and perversion as it becomes possible to seamlessly graft the heads of real people onto still photos and videos of nude bodies that closely match the physiques of the actual people. New technology for doing this will let amateurs make high-quality deepfakes, meaning any person could be targeted. It will even become possible to wear AR glasses that interpolate nude, virtual bodies over the bodies real people in the wearer’s field of view to provide a sort of fake “X-ray-vision.” The AR glasses could also be used to apply other types of visual filters that degraded real people within the field of view.
“Smart home”/”Wired home” technology will become mature and widespread in developed countries.
Video gaming will dispense with physical media, and games will be completely streamed from the internet or digitally downloaded. Business that exist just to sell game discs (Gamestop) will shut down.
Instead of a typical home entertainment system having a whole bunch of media discs, different media players and cable boxes, there will be one small, multipurpose box that, among other things, boosts WiFi to ensure the TV and all nearby devices can get signals at multi-Gb/s speeds.
Self-driving vehicles will start hitting the roads in large numbers in rich countries. The vehicles won’t drive as efficiently as humans (a lot of hesitation and slowing down for little or no reason), but they’ll be as safe as human drivers. Long-haul trucks that ply simple highway routes will be the first category of vehicles to be fully automated. The transition will be heralded by a big company like Wal-Mart buying 5,000 self-driving tractor trailers to move goods between its distribution centers and stores. Last-mile delivery–involving weaving through side streets, cities and neighborhoods, and physically carrying packages to peoples’ doors–won’t be automated until after this decade. Self-driving, privately owned passenger cars will stay few in number and will be owned by technophiles, rich people, and taxi cab companies.
Thanks to improvements in battery energy density and cost, and in fast-charging technology, electric cars will become cost-competitive with gas-powered cars this decade without government subsidies, leading to their rapid adoption. Electric cars are mechanically simpler and more reliable than gas-powered ones, which will hurt the car repair industry. Many gas stations will also go bankrupt or convert to fast charging stations.
Most new power equipment will be battery-powered, so machines like lawn mowers, leaf blowers, and chainsaws will be much quieter and less polluting than they are today. Batteries will be energy-dense enough to compete with gasoline in these use cases, and differences in overall equipment weight and running time will be insignificant. The notion of a neighbor shattering your sense of peace and quiet with loud yard work will get increasingly alien.
A machine will pass the Turing Test by the end of this decade. The milestone will attract enormous amounts of attention and will lead to several retests, some of which the machine will fail, proving that it lacks the full range of human intelligence. It will lead to debate over the Turing Test’s validity as a measure of true intelligence (Ray Kurzweil actually talked about this phenomenon of “moving the goalposts” whenever we think about how smart computers are), and many AI experts will point out the existence of decades-long skepticism in the Turing Test in their community.
The best AIs circa 2029 won’t be able to understand and upgrade their own source codes. They will still be narrow AIs, albeit an order of magnitude better than the ones we have today.
Machines will become better than humans at the vast majority of computer, card, and board games. The only exceptions will be very obscure games or recently created games that no one has bothered to program an AI to play yet. But even for those games, there will be AIs with general intelligence and learning abilities that will be “good enough” to play as well as average humans by reading the instruction manuals and teaching themselves through simulated self-play.
The cost of getting your genome sequenced and expertly interpreted will drop below $1,000, and enough about the human genome will have been deciphered to make the cost worth the benefit for everyone. By the end of the decade, it will be common for newborns in rich countries to have their genomes sequenced.
Better technology will also let pregnant women noninvasively obtain their fetuses’ DNA, at affordable cost.
Cheap DNA tests that can measure a person’s innate IQ and core personality traits with high accuracy will become widely available. There is the potential for this to cause social problems.
At-home medical testing kits and diagnostic devices like swallowable camera-pills will become vastly better and more common.
Space tourism will become routine thanks to privately owned spacecraft.
Marijuana will be effectively decriminalized in the U.S. Either the federal government will overturn its marijuana prohibitions, or some patchwork of state and federal bans will remain but be so weakened and lightly enforced that there will be no real government barriers to obtaining and using marijuana.
By the end of this decade, photos of almost every living person will be available online (mostly on social media). Apps will exist that can scan through trillions of photos to find your doppelgangers.
In 2029, the youngest Baby Boomer and the oldest Gen Xer will turn 65.
Drones will be used in an attempted or successful assassination of at least one major world leader (Note: Venezuela’s Nicholas Maduro wasn’t high profile enough).
2030s
VR and AR goggles will become refined technologies and probably merge into a single type of lightweight device. Like smartphones today, anyone who wants the glasses in 2030 will have them. Even poor people in Africa will be able to buy them. A set of the glasses will last a day on a single charge under normal use.
Augmented reality contact lenses will enter mass production and become widely available, though they won’t be as good as AR glasses and they might need remotely linked, body-worn hardware to provide them with power and data. https://www.inverse.com/article/31034-augmented-reality-contact-lenses
The bulky VR goggles of the 2020s will transform into lightweight, portable V.R. glasses thanks to improved technology. The glasses will display lifelike footage. However, the best VR goggles will still need to be plugged into other devices, like routers or PCs.
Wall-sized, thin, 8K or even 16K TVs will become common in homes in rich countries, and the TVs will be able to display 3D picture without the use of glasses, though the 3D effect will only be visible to people sitting directly in front of the screen. A sort of virtual reality chamber could be created at moderate cost by installing those TVs on all the walls of a room to create a single, wraparound screen.
It will be common for celebrities of all kinds to make money by “hanging out” with paying customers in virtual reality. For some lower-tier celebrities, this will be their sole source of income.
Functional CRT TVs and computer monitors will only exist in museums and in the hands of antique collectors. This will also be true for DLP TVs.
The video game industry will be bigger than ever and considered high art.
It will be standard practice for AIs to be doing hyperrealistic video game renderings, and for NPCs to behave very intelligently thanks to better AI.
Books and computer tablets will merge into a single type of device that could be thought of as a “digital book.” It will be a book with several hundred pages made of thin, flexible digital displays (perhaps using ultra-energy efficient e-ink) instead of paper. At the tap of a button, the text on all of the pages will instantly change to display whichever book the user wanted to read at that moment. They could also be used as notebooks in which the user could hand write or draw things with a stylus, which would be saved as image or text files. The devices will fuse the tactile appeal of old-fashioned books with the content flexibility of tablet computers.
Loose-leaf sheets of “digital paper” will also exist thanks to the same technology.
Commercially available, head-worn, brain-computer-interface devices (BCIs) linked to augmented reality eyewear will gift humans with crude forms of telepathy and telekinesis. For example, a person wearing the devices could compose a short sentence merely by thinking about it, see the text projected across his augmented field of view, use his thoughts to make any needed edits, and then transmit the sentence to another person or machine, merely by thinking a “Send” command. The human recipient of the message with the same BCI/eyewear setup would see the text projected across his field of view and could compose a response through the same process the first person used. BCIs will also let humans send commands to a machines, like printers. For almost all use cases, this type of communication will be less efficient than traditional alternatives, like manually typing a text message or clicking the “Print” button at the top of a word processing application, but it will be an important proof of concept demonstration that will point to what is to come later in the century.
Loneliness, social isolation, and other problems caused by overuse of technology and the atomized structure of modern life will be, ironically, cured to a large extent by technology. Chatbots that can hold friendly (and even funny and amusing) conversations with humans for extended periods, diagnose and treat mental illnesses as well as human therapists, and customize themselves to meet the needs of humans will become ubiquitous. The AIs will become adept at analyzing human personalities and matching lonely people with friends and lovers, at matching them with social gatherings (including some created by machines), and at recommending daily activities that will satisfy them, hour-by-hour. Machines will come to understand that constant technology use is antithetical to human nature, so in order to promote human wellness, they find ways to impel humans to get out of their houses, interact with other humans, and be in nature. Autonomous taxis will also be widespread and will have low fares, making it easier for people who are isolated due to low income or poor health (such as many elderly people) to go out.
Chatbots will steadily improve their “humanness” over the decade. The instances when AIs say or do something nonsensical will get less and less frequent. Dumber people, children, and people with some types of mental illness will be the first ones to start insisting their AIs are intelligent like humans. Later, average people will start claiming the same. By the end of the decade, a personal assistant AI like “Samantha” from the movie Her will be commercially available. AI personal assistants will have convincing, simulated personalities that seem to have the same depth as humans. Users will be able to pick from among personality profiles or to build their own.
Chatbots will be able to have intelligent conversations with humans about politics and culture, to identify factually wrong beliefs, biases, and cognitive blind spots in individuals, and to effectively challenge them through verbal discussion and debate. The potential will exist for technology to significantly enlighten the human population and to reduce sociopolitical polarization. However, it’s unclear how many people will choose to use this technology.
Turing-Test-capable chatbots will also supercharge the problem of online harassment, character assassination, and deliberate disinformation by spamming the internet with negative reviews, bullying messages, emails to bosses, and humiliating “deepfake” photos and videos of targeted people. Today’s “troll farms” where humans sit at computer terminals following instructions to write bad reviews for specific people or businesses will be replaced by AI trolls that can pump out orders of magnitude more content per day. And just as people today can “buy likes” for their social media accounts or business webpages, people in the future will be able, at low cost, to buy harassment campaigns against other people and organizations they dislike. Discerning between machine-generated and human-generated internet content will be harder and more important than ever.
House robots will start becoming common in rich countries. They will be slower at doing household tasks than humans, but will still save people hours of labor per week. They may or may not be humanoid. For the sake of safety and minimizing annoyance, most robots will do their work when humans aren’t around. As in, you would come home from work every day and find the floors vacuumed, the lawn mowed, and your laundered clothes in your dresser, with nary a robot in sight since it will have gone back into its closet to recharge. You would never hear the commotion of a clothes washing machine, a vacuum cleaner or a lawnmower. All the work would get done when you were away, as if by magic.
People will start having genuine personal relationships with AIs and robots. For example, people will resist upgrading to new personal assistant AIs because they will have emotional attachments to their old ones. The destruction of a helper robot or AI might be as emotionally traumatic to some people as the death of a human relative.
Farm robots that are better than humans at fine motor tasks like picking strawberries humans will start becoming widespread.
Self-driving cars will become cheap enough and practical enough for average income people to buy, and their driving behavior will become as efficient as an average human. Over the course of this decade, there will be rapid adoption of self-driving cars in rich countries. Freed from driving, people will switch to doing things like watching movies/TV and eating. Car interiors will change accordingly. Road fatalities, and the concomitant demands for traffic police, paramedics, E.R. doctors, car mechanics, and lawyers will sharply decrease. The car insurance industry will shrivel, forcing consolidation. (Humans in those occupations will also face increasing levels of direct job competition from machines over the course of the decade.)
Private owners of autonomous cars will start renting them out while not in use as taxis and package delivery vehicles. Your personal, autonomous car will drive you to work, then spend eight hours making money for you doing side jobs, and will be waiting for you outside your building at the end of the day.
The “big box” business model will start taking over the transportation and car repair industry thanks to the rise of electric, self-driving vehicles and autonomous taxis in place of personal car ownership. The multitudes of small, scattered car repair shops will be replaced by large, centralized car repair facilities that themselves resemble factory assembly lines. Self-driving vehicles will drive to them to have their problems diagnosed and fixed, sparing their human owners from having to waste their time sitting in waiting rooms.
The same kinds of facilities will make inroads into the junk yard industry, as they would have all the right tooling to cheaply and rapidly disassemble old vehicles, test the parts for functionality, and shunt them to disposal or individual resale. (The days of hunting through junkyards by yourself for a car part you need will eventually end–it will all be on eBay. )
Car ownership won’t die out because it will still be a status symbol, and having a car ready in your driveway will always be more convenient than having to wait even just two minutes for an Uber cab to arrive at the curb. People are lazy.
The ad hoc car rental model exemplified by autonomous Uber cabs and private people renting out their autonomous cars when not in use faces a challenge since daily demand for cars peaks during morning rush hour and afternoon rush hour. In other words, everyone needs a car at the same time each day, so the ratio of cars : people can’t deviate much from, say, 1:2. Of course, if more people telecommuted (almost certain in the future thanks to better VR, faster broadband, and tech-savvy Millennials reaching middle age and taking over the workplace), and if flexible schedules became more widespread (also likely, but within certain limits since most offices can’t function efficiently unless they have “all hands on deck” for at least a few hours each day), the ratio could go even lower. However, there’s still a bottom limit to how few cars a country will need to provide adequate daily transportation for its people.
Private delivery services will get cheaper and faster thanks to autonomous vehicles.
Automation will start having a major impact on the global economy. Machines will compensate for the shrinkage of the working-age human population in the developed world. Countries with “graying” populations like Japan and Germany will experience a new wave of economic growth. Demand for immigrant laborers will decrease across the world because of machines.
There will be a worldwide increase in the structural unemployment rate thanks to better and cheaper narrow AIs and robots. A plausible scenario would be for the U.S. unemployment rate to be 10%–which was last the case at the nadir of the Great Recession–but for every other economic indicator to be strong. The clear message would be that human labor is becoming decoupled from the economy.
Combining all the best AI and robotics technologies, it will be possible to create general-purpose androids that could function better in the real world (e.g. – perform in the workplace, learn new things, interact with humans, navigate public spaces, manage personal affairs) than the bottom 10% of humans (e.g. – elderly people, the disabled, criminals, the mentally ill, people with poor language abilities or low IQs), and in some narrow domains, the androids will be superhuman (e.g. – physical strength, memory, math abilities). Note that businesses will still find it better to employ task-specific, non-human-looking robots instead of general purpose androids. The androids will be very few in number by the end of 2039, and will be technology demonstrators and prototypes that get a lot of media coverage at carefully controlled tech company demo events. They won’t be available for any person to purchase, won’t roam around public spaces, and won’t have important jobs. At a minimum, each one will cost hundreds of thousands of dollars.
By the end of this decade, only poor people, lazy people, and conspiracy theorists (like anti-vaxxers) won’t have their genomes sequenced. It will be trivially cheap, and in fact free for many people (some socialized health care systems will fully subsidize it), and enough will be known about the human genome to make it worthwhile to have the information.
Computers will be able to accurately deduce a human’s outward appearance based on only a DNA sample. This will aid police detectives, and will have other interesting uses, such as allowing parents to see what their unborn children will look like as adults, or allowing anyone to see what they’d look like if they were of the opposite sex (one sex chromosome replaced).
Trivially cheap gene sequencing and vastly improved knowledge of the human genome will give rise to a “human genome black market,” in which people secretly obtain DNA samples from others, sequence them, and use the data for their own ends. For example, a politician could be blackmailed by an enemy who threatened to publish a list of his genetic defects or the identities of his illegitimate children. Stalkers (of celebrities and ordinary people) would also be interested in obtaining the genetic information of the people they were obsessed with. It is practically impossible to prevent the release of one’s DNA since every discarded cup, bottle, or utensil has a sample.
Markets will become brutally competitive and efficient thanks to AIs. Companies will sharply grasp consumer demand through real-time surveillance, and consumers will be alerted to bargains by their personal AIs and devices (e.g. – your AR glasses will visually highlight good deals as you walk through the aisles of a store). Your personal assistant AIs and robots will look out for your self-interest by countering the efforts of other AIs to sway your spending habits in ways that benefit companies and not you.
“Digital immortality” will become possible for average people. Personal assistant AIs, robot servants, and other monitoring devices will be able, through observation alone, to create highly accurate personality profiles of individual humans, and to anticipate their behavior with high fidelity. Voices, mannerisms and other biometrics will be digitally reproducible without any hint of error. Digital simulacra of individual humans will be further refined by having them take voluntary personality tests, and by uploading their genomes, brain scans and other body scans. Even if all of the genetic and biological data couldn’t be made sense of at the moment it was uploaded to an individual’s digital profile, there will be value in saving it since it might be decipherable in the future. (Note that “digital immortality” is not the same as “mind uploading.”)
Life expectancy will have increased by a few years thanks to pills and therapies that slightly extend human lifespan. Like, you take a $20 pill each day starting at age 20 and you end up dying at age 87 instead of age 84.
Global oil consumption will peak as people continue switching to other power sources.
Earliest possible date for the first manned Mars mission.
Machines will become as good as professional humans at language translation.
Movie subtitles and the very notion of there being “foreign language films” will become obsolete. Computers will be able to perfectly translate any human language into another, to create perfect digital imitations of any human voice, and to automatically apply CGI so that the mouth movements of people in video footage matches the translated words they’re speaking. The machines will also be able to reproduce detailed aspects of an actor’s speech, such as cadence, rhythm, tone and timbre, emotion, and accent, and to convey them accurately in another language.
Computers will also be able to automatically enhance and upscale old films by accurately colorizing them, removing defects like scratches, and sharpening or focusing footage (one technique will involve interpolating high-res still photos of long-dead actors onto the faces of those same actors in low-res moving footage). Computer enhancement will be so good that we’ll be able to watch films from the early 20th century with near-perfect image and audio clarity.
CGI will get so refined than moviegoers with 20/20 vision won’t be able to see the difference between footage of unaltered human actors and footage of 100% CGI actors.
Lifelike CGI and “performance capture” will enable “digital resurrections” of dead actors. Computers will be able to scan through every scrap of footage with, say, John Wayne in it, and to produce a perfect CGI simulacrum of him that even speaks with his natural voice, and it will be seamlessly inserted into future movies. Elderly actors might also license movie studios to create and use digital simulacra of their younger selves in new movies. The results will be very fascinating, but might also worsen Hollywood’s problem with making formulaic content.
Machines will be able to imitate the voices of specific humans so accurately that most human listeners won’t be able to tell the difference. Those that can reliably detect any difference will find it very faint.
Smartphone apps will be able to remotely monitor a person’s vital statistics and to quickly derive a wealth of data about things like their emotional state, health, age, and truthfulness from factors like their heart rate, breathing pattern, body movements, microexpressions, and speech patterns.
Tiny cameras that can capture and transmit high resolution footage will be available for a few dollars apiece. A device the size of a sugar cube that has enough memory and battery life to record video footage for several hours would fit the bill.
China’s military will get strong enough to defeat U.S. forces in the western Pacific. This means that, in a conventional war for control of the Spratly Islands and/or Taiwan, China would have >50% odds of winning. This shift in the local balance of power does not mean China will start a conflict.
The quality and sophistication of China’s best military technology will surpass Russia’s best technology in all or almost all categories. However, it will still lag the U.S.
2040s
The world and peoples’ outlooks and priorities will be very different than they were in 2019. Cheap renewable energy will have become widespread and totally negated any worries about an “energy crisis” ever happening, except in exotic, hypothetical scenarios about the distant future. There will be little need for immigration thanks to machine labor and cross-border telecommuting (VR, telepresence, and remote-controlled robots will be so advanced that even blue-collar jobs involving manual labor will be outsourced to workers living across borders). Moreover, there will be a strong sense in most Western countries that they’re already “diverse enough,” and that there are no further cultural benefits to letting in more foreigners since large communities of most foreign ethnic groups will already exist within their borders. There will be more need than ever for strong social safety nets and entitlement programs thanks to technological unemployment. AI will be a central political and social issue. It won’t be the borderline sci-fi, fringe issue it was in 2019.
Automation, mass unemployment, wealth inequalities between the owners of capital and everyone else, and differential access to expensive human augmentation technologies (like genetic engineering) will produce overwhelming political pressure for some kind of wealth redistribution and social safety net expansion. Countries that have diligently made small, additive reforms as necessary over the preceding decades will be untroubled. However, countries that failed to adapt their political and economic systems will face upheaval.
2045 will pass without the Technological Singularity happening. Ray Kurzweil will either celebrate his 97th birthday in a wheelchair, or as a popsicle frozen at the Alcor Foundation.
Supercomputers that match or surpass upper-level estimates of the human brain’s computational capabilities will cost a few hundred thousand to a few million dollars apiece, meaning tech companies and universities will be able to afford large numbers of them for AI R&D projects, accelerating progress in the field. Hardware will no longer be the limiting factor to building AGI. If it hasn’t been built yet, it will be due to failure to figure out how to arrange the hardware in the right way to support intelligent thought, and/or to a failure to develop the necessary software.
With robots running the economy, it will be common for businesses to operate 24/7: restaurants will never close, online orders made at 3:00 am will be packed in boxes by 3:10 am, and autonomous delivery trucks will only stop to refuel, exchange cargo, or get preventative maintenance.
Advanced energy technology, robot servants, 3D printers, telepresence, and other technologies will allow people to live largely “off-grid” if they choose, while still enjoying a level of comfort that 2019 people would envy.
Robot servants will be common in upper-income and middle-class households across the developed world. Some will be function-specific, like autonomous lawn mowers, while others will be multifunctional, like robot butlers. They will work more slowly than humans and will make mistakes more often, but nevertheless, they will save their human owners many hours of work each week. A high-quality multifunction robot servant will cost $5,000 – $20,000 in today’s money. In other words, cheaper than a new car, but still a significant investment of money.
Androids will be significantly better than they were in the 2030s, and aspects of their physiques, intelligence, and capabilities will overlap even more with humans, but they still won’t be able to pass as one of us in normal situations. If you could examine one at very close distance, you would see that its skin and other external features were less detailed than those of real humans. Their body movements will be clumsier and more limited than the average human’s, probably leaving them with the same overall reflexes, nimbleness, balance, and speed as an elderly human. They will also lack the battery life to function for a whole work day in physically demanding occupations.
Recycling will become much more efficient and practical thanks to house robots properly cleaning, sorting, and crushing/compacting waste before disposing of it. Automated sorting machines at recycling centers will also be much better than they are today. Today, recycling programs are hobbled because even well-meaning humans struggle to remember which of their trash items are recyclable and which aren’t since the acceptable items vary from one municipality to the next, and as a result, recycling centers get large amounts of unusable material, which they must filter out at great cost. House robots would remember it perfectly.
Thanks to this diligence, house robots will also increase backyard composting, easing the burden on municipal trash services.
Genetic engineering of offspring becomes about as common among richer people as IVF is among them in 2023. The engineered offspring aren’t “superhumans”–they’re slightly better than they would have been without technological intervention.
It will be common for cities, towns and states to heavily restrict or ban human-driven vehicles within their boundaries. A sea change in thinking will happen as autonomous cars become accepted as “the norm,” and human-driven cars start being thought of as unusual and dangerous.
There will be something that could be called a “self-driving RV vacation industry” wherein a person would rent a self-driving RV that would be programmed to take them on a multi-day tour of some area, hitting all the important sights. At each one, a virtual tour guide that the person could see, hear and interact with through smart glasses would lead them around on foot.
Over 90% of new car sales in developed countries will be for electric vehicles. Just as the invention of the automobile transformed horses into status goods used for leisure, the rise of electric vehicles will transform internal combustion vehicles into a niche market for richer people.
A global “family tree” showing how all humans are related will be built using written genealogical records and genomic data from the billions of people who have had their DNA sequenced. It will become impossible to hide illegitimate children, and it will also become possible for people to find “genetic doppelgangers”–other people they have no familial relationship to, but with whom, by some coincidence, they share a very large number of genes.
Improved knowledge of human genetics and its relevance to personality traits and interests will strengthen AI’s ability to match humans with friends, lovers, and careers. Rising technological unemployment will create a need for machines to match human workers with the remaining jobs in as efficient a manner as possible.
People with distinctive personalities (particularly vibrant, funny, or sexy) will routinely sell “digital copies” of themselves for other people to download and use as AI personal assistants. This will be analogous to today’s ability to select different voices for personal GPS devices. Additionally, users will be able to tweak “base versions” of downloaded personalities to suit their unique preferences.
The digital personalities of fictitious people, like movie and cartoon characters, and of long-dead people, will also be downloadable.
Realistic robot sex bots that can move and talk will exist. They won’t perfectly mimic humans, but will be “good enough” for most users. Using them will be considered weird and “for losers” at first, but in coming decades it will go mainstream, following the same pattern as Internet dating. [If we think of sex as a type of task, and if we agree that machines will someday be able to do all tasks better than humans, then it follows that robots will be better than humans at sex.]
Augmented reality contact lenses will give people superhuman vision.
3D TVs will improve. Among other things, multiple viewers watching the same TV from different viewing angles will experience the 3D visual effect.
Any person will be able to use his personal technologies to create a highly immersive audiovisual experience almost anywhere. For example, a person’s computer glasses could simulate the experience of being in an IMAX movie theater. Alternatively, the person could use his smartphone or another device to beam video images against a wall, creating an ad hoc theater for real. Major improvements to the price-performance and energy efficiency of LEDs and lasers will let small personal devices to have inbuilt light projectors that match the quality of professional-quality projectors that cost thousands of dollars today.
There will be drones that can use facial recognition and other forms of recognition to autonomously track down specific people and kill them.
At least one major military will be using some type of combat robot (whether it is airborne, seaborne, or terrestrial) that is empowered to fire on human enemies autonomously.
2050s
This is the earliest possible time that AGI/SAI will be invented. It will not be able to instantly change everything in the world or to initiate a Singularity, but it will rapidly grow in intelligence, wealth, and power. It will probably be preceded by successful computer simulations of the brains of progressively more complex model organisms, such as flatworms, fruit flies, and lab rats.
Humans will be heavily dependent upon their machines for almost everything (e.g. – friendship, planning the day, random questions to be answered, career advice, legal counseling, medical checkups, driving cars), and the dependency will be so ingrained that humans will reflexively assume that “The Machines are always right.” Consciously and unconsciously, people will yield more and more of their decision-making and opinion-forming to machines, and find that they and the world writ large are better off for it. This will be akin to having an angel on your shoulder watching your surroundings and watching you, and giving you constructive advice all the time.
In the developed world, less than 50% of people between age 22 and 65 will have gainful full-time jobs. However, if unprofitable full-time jobs that only persist thanks to government subsidies (such as someone running a small coffee shop and paying the bills with their monthly UBI check) and full-time volunteer “jobs” (such as picking up trash in the neighborhood) are counted, most people in that age cohort will be “doing stuff” on a full-time basis.
The doomsaying about Global Warming will start to quiet down as the world’s transition to clean energy hits full stride and predictions about catastrophes from people like Al Gore fail to pan out by their deadlines. Sadly, people will just switch to worrying about and arguing about some new set of doomsday prophecies about something else.
By almost all measures, standards of living will be better in 2050 than today. People will commonly have all types of wonderful consumer devices and appliances that we can’t even fathom. However, some narrow aspects of daily life are likely to worsen, such as overcrowding and further erosion of the human character. Just as people today have short memories and take too many things for granted, so shall people in the 2050s fail to appreciate how much the standard of living has risen since today, and they will ignore all the steady triumphs humanity has made over its problems, and by default, people will still believe the world is constantly on the verge of collapsing and that things are always getting worse.
Cheap desalination will provide humanity with unlimited amounts of drinking water and end the prospect of “water wars.”
Mass surveillance and ubiquitous technology will have minimized violent crime and property crime in developed countries: It will be almost impossible to commit such crimes without a surveillance camera or some other type of sensor detecting the act, or without some device recording the criminal’s presence in the area at the time of the act. House robots will contribute by effectively standing guard over your property at night while you sleep.
It will be common for people to have health monitoring devices on and inside of their bodies that continuously track things like their heart rate, blood pressure, respiration rate, and gene expression. If a person has a health emergency or appears likely to have one, his or her devices will send out a distress signal alerting EMS and nearby random citizens. If you walked up to such a person while wearing AR glasses, you would see their vital statistics and would receive instructions on how to assist them (i.e. – How to do CPR). Robots will also be able to render medical aid.
Cities and their suburbs across the world will have experienced massive growth since 2019. Telepresence, relatively easy off-grid living, and technological unemployment will not, on balance, have driven more people out of metro areas than have migrated into them. Farming areas full of flat, boring land will have been depopulated, and many farms will be 100% automated. The people who choose to leave the metro areas for the “wilderness” will concentrate in rural areas (including national parks) where the climate is good, the natural scenery is nice, and there are opportunities for outdoor recreation. Real estate prices will, in inflation-adjusted terms, be much higher in most metro areas and places with natural beauty than they were in 2020 because the “supply” of those prime locations is almost fixed, whereas the demand for them is elastic and will rise thanks to population growth, rising incomes, and the aforementioned technology advancements.
Therapeutic cloning and stem cell therapies will become useful and will effectively extend human lifespan. For example, a 70-year-old with a failing heart will be able to have a new one grown in a lab using his own DNA, and then implanted into his chest to replace the failing original organ. The new heart will be equivalent to what he had when at age 18 years, so it will last another 52 years before it too fails. In a sense, this will represent age reversal to one part of his body.In a sense, this will represent age reversal to one part of his body.
As a result of the above technologies, it will be much rarer for people in rich countries to die waiting for organ transplants than it is now, in 2022.
The first healthy clone of an adult human will be born.
Many factories, farms, and supply chains will be 100% automated, and it will be common for goods to not be touched by a human being’s hands until they reach their buyers. Robots will deliver Amazon packages to your doorstep and even carry them into your house. Items ordered off the internet will appear inside your house a few hours later, as if by magic.
Smaller versions of the robots used on automated farms will be available at low cost to average people, letting them effortlessly create backyard gardens. This will boost global food production and let people have greater control over where their food comes from and what it contains.
The last of America’s Cold War-era weapon platforms (e.g. – the B-52 bomber, F-15 fighter, M1 Abrams tank, Nimitz aircraft carrier) will finally be retired from service. There will be instances where four generations of people from the same military family served on the same type of plane or ship.
Cheap guided bullets, which can make midair course changes and be fired out of conventional man-portable rifles, will become common in advanced armies.
Personal “cloaking devices” made of clothes studded with pinhole cameras and thin, flexible sheets of LEDs, colored e-ink, or some metamaterial with similar abilities will be commercially available. The cameras will monitor the appearance of the person’s surroundings and tell the display pixels to change their colors to match.
The “cloaking” outfits will also have benign applications related to fashion and everyday utility. People wearing them could use them to display morphing patterns and colors of their choice. It would even be possible to become a “walking TV.” The pixels could also be made to glow bright white, allowing the wearer to turn any part of his body into a flashlight. Ski masks made of the same material would let wearers change their facial features, fooling most face recognition cameras and certainly fooling the unaided eyes of humans, at least at a distance.
Powered exoskeletons will become practical for a wide range of applications, mainly due to improvements in batteries. For example, a disabled person could use a lightweight exoskeleton with a battery the size of a purse to walk around for a whole day on a single charge, and a soldier in a heavy-duty exoskeleton with a large backpack battery could do a day of marching on a single charge. (Note: Even though it will be technologically possible to equip infantrymen with combat exoskeletons, armies might reject the idea due to other impracticalities.)
There will be no technological or financial barrier to building powered combat exoskeletons that have cloaking devices.
The richest person alive will achieve a $1 trillion net worth.
It will be technologically and financially feasible for small aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by carbon-neutral synthetic fossil fuels that cost no more than normal fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells.
Cheap guided bullets, capable of midair course changes to hit targets and of being fired out of conventional rifles, will become common in advanced armies. (One or two degrees of course change per 100 meters of bullet travel is realistic. ) Practical, affordable rifles capable of limited self-aiming will also exist (similar to the “Smartgun” from the movie Aliens). Thanks to these technologies, an ordinary rifleman of the 2050s will be like the snipers of today.
2060s
Machines will be better at satisfyingly matching humans with fields of study, jobs, friends, romantic partners, hobbies, and daily activities than most humans can do for themselves. Machines themselves will make better friends, confidants, advisers, and even lovers than humans. Additionally, machines will be smarter and more skilled at humans in most areas of knowledge and types of work. A cultural sea change will happen, in which most humans come to trust, rely upon, defend, and love machines.
House robots and human-sized worker robots will be as strong, agile, and dexterous as most humans, and their batteries will be energy-dense enough to power them for most of the day. A typical American family might have multiple robot servants that physically follow around the humans each day to help with tasks. The family members will also be continuously monitored and “followed” by A.I.s embedded in their portable personal computing devices and possibly in their bodies.
Cheap home delivery of groceries, robot chefs, and a vast trove of free online recipes will enable people in average households to eat restaurant-quality meals at home every day, at low cost. Predictive algorithms that can appropriately choose new meals for humans based on their known taste preferences and other factors will determine the menu, and many people will face a culinary “satisfaction paradox.”
Average people will have access to high-quality meals that only rich people can have today at fancy restaurants.
Machines will understand humans individually and at the species level better than humans understand themselves. They will have highly accurate personality models of most humans along with a comprehensive grasp of human sociology, human decision-making, human psychology, human cognitive biases, and human nature, and will pool the information to accurately predict human behavior. A nascent version of a 1:1 computer simulation of the Earth–with the human population modeled in great detail–will be created. An important application will be economic modeling and forecasting.
Machines will be better teachers than most trained humans. The former will have much sharper grasps of their pupils’ individual strengths, weaknesses, interests, and learning styles, and will be able to create and grade tests in a much fairer and less biased manner than humans. Every person will have his own tutor.
There will be a small, permanent human presence on the Moon.
If a manned Mars mission hasn’t happened yet, then there will be intense pressure to do so by the centennial of the first Moon landing (1969).
The worldwide number of supercentenarians–people who are at least 110 years old–will be sharply higher than it was in 2019: Their population size could be 10 times bigger or more.
Advances in a variety of technologies will make it possible to cryonically freeze humans in a manner that doesn’t pulverize their tissue. However, the technology needed to safely thaw them out won’t be invented for decades.
China will effectively close the technological, military, and standard of living gaps with other developed countries. Aside from the unpleasantness of being a more crowded place, life in China won’t be worse overall than life in Japan or the average European country. Importantly, China’s pollution levels will be much lower than they are today thanks to a variety of factors.
Small drones (mostly aerial) will have revolutionized warfare, terrorism, assassinations, and crime and will be mature technologies. An average person will be able to get a drone of some kind that can follow his orders to find and kill other people or to destroy things.
Countermeasures against those small drones will also have evolved, and might include defensive drones and mass surveillance networks to detect drone attacks early on. The networks would warn people via their body-worn devices of incoming drone attacks or of sightings of potentially hostile drones. The body-worn devices, such as smartphones and AR glasses, might even have their own abilities to automatically detect drones by sight and sound and to alert their wearers.
At least one large, manned spaceship that is designed to stay in space will exist, probably in the form of a reusable ferry that moves people between Earth and Mars.
2070s
100 years after the U.S. “declared war” on cancer, there still will not be a “cure” for most types of cancer, but vaccination, early detection, treatment, and management of cancer will be vastly better, and in countries with modern healthcare systems, most cancer diagnoses will not reduce a person’s life expectancy. Consider that diabetes and AIDS were once considered “death sentences” that would invariably kill people within a few years of diagnosis, until medicines were developed that transformed them into treatable, chronic health conditions.
Hospital-acquired infections will be far less of a problem than they are in 2020 thanks to better sterilization practices, mostly made possible by robots.
It will be technologically and financially feasible for large commercial aircraft to produce zero net carbon emissions. The aircraft might use conventional engines powered by synthetic fossil fuels, or they might have electric engines and very energy-dense batteries or fuel cells.
Digital or robotic companions that seem (or actually are) intelligent, funny, and loving will be easier for humans to associate with than other humans.
Technology will enable the creation of absolute surveillance states, where all human behavior is either constantly monitored or is inferred with high accuracy based on available information. Even a person’s innermost thoughts will be knowable thanks to technologies that monitor him or her for the slightest things like microexpressions, twitches, changes in voice tone, and eye gazes. When combined with other data regarding how the person spends their time and money, it will be possible to read their minds. The Thought Police will be a reality in some countries.
Thanks to advanced lab synthesis of foods, new spices, hybrid fruits and vegetables, and meats with entirely new taste profiles will be brought into existence. Swaths of the “landscape of all possible flavors” that are currently unexplored will be.
Many heavily automated farms (including indoor farms and gardens on suburban plots of land) will produce food that is noticeably tastier and measurably more nutritious that most of today’s food because the advanced farms won’t need to use pesticides or to favor crop varieties that are hardy enough to endure transport over long supply chains. At low cost and for little effort, communities and individuals with small amounts of land will be able to meet their own food needs locally. People who value “natural” lifestyles might, ironically, find it most beneficial to rely on robots to make their food for them.
Glasses-free 3D TVs will be almost fully developed technologies with few performance limitations.
2100
Humans probably won’t be the dominant intelligent life forms on Earth.
Latest possible time that AGI/SAI will be invented. By this point, computer hardware will so powerful that we could do 1:1 digital simulations of human brains. If our AI still falls far short of human-like general intelligence and creativity, then it might be that only organic substrates have the necessary properties to support them.
The worst case scenario is that AGI/Strong AI will have not been invented yet, but thousands of different types of highly efficient, task-specific Narrow AIs will have (often coupled to robot bodies), and they will fill almost every labor niche better than human workers ever could (“Death by a Thousand Cuts” job automation scenario). Humans grow up in a world where no one has to work, and the notion of drudge work, suffering through a daily commute, and involuntarily waking up at 6:00 am five days a week is unfathomable. Every human will have machines that constantly monitor them or follow them around, and meet practically all their needs.
Telepresence technology will also be very advanced, allowing humans to do nearly any task remotely, from any other place in the world, in safety and comfort. This will include cognitive tasks and hands-on tasks. If any humans still have jobs, they’ll be able to work from anywhere.
Sophisticated narrow AI will be integrated into the telepresence technology, providing human workers with real-time assistance with tasks. An illustrative scenario would have a human in Nigeria using a VR rig to remotely control a robot that is fixing an air conditioner in England. Software programs monitoring the live video feed would recognize all of the objects in the robot’s field of view and would also understand what the human worker was trying to accomplish, and the programs would help him by visually highlighting tools or air conditioner components, or by giving him verbal advice on what to do.
The use of robotic surrogate bodies for remote work will also erase any employment gaps caused by physical strength and endurance differences between the sexes and between the elderly and the young. Small men, old people, and women of average stature will be just as good at performing hard manual labor as big men. The easing of physical strain associated with work will also allow people to work past today’s retirement age. However, most serious physical work will be best left to autonomous machines.
The world could in many ways resemble Ray Kurzweil’s predicted Post-Singularity world. However, the improvements and changes will have accrued thanks to decades of AGI/Strong AI steady effort. Everything will not instantly change on DD/MM/2045 as Kurzweil suggests it will.
Hundreds of millions, and possibly billions, of “digitally immortal avatars” of dead humans will exist, and you will be able to interact with them through a variety of means (in FIVR, through devices like earpieces and TV screens, in the real world if the avatar takes over an android body resembling the human it was based on).
A weak sort of immortality will be available thanks to self-cloning, immortal digital avatars, and perhaps mind uploading. You could clone yourself and instruct your digital avatar–which would be a machine programmed with your personality and memories–to raise the clone and ensure it developed to resemble you. Your digital avatar might have an android body or could exist in a disembodied state.
It will be possible to make clones of humans using only their digital format genomic data. In other words, if you had a .txt file containing a person’s full genetic code, you could use that by itself to make a living, breathing clone. Having samples of their cells would not be necessary.
The “DNA black market” that arose in the 2030s will pose an even bigger threat since it will be now possible to use DNA samples alone or their corresponding .txt files to clone a person or to produce a sperm or egg cell and, in turn, a child. Potential abuses include random people cloning or having the children of celebrities they are obsessed with, or cloning billionaires in the hopes of milking the clones for money. Important people who might be targets of such thefts will go to pains to prevent their DNA from being known. Since dead people have no rights, third parties might be able to get away with cloning or making gametes of the deceased.
Life expectancy escape velocity and perhaps medical immortality will be achieved. It will come not from magical, all-purpose nanomachines that fix all your body’s cells and DNA, but from a combination of technologies, including therapeutic cloning of human organs, cybernetic replacements for organs and limbs, and stem cell therapies that regenerate ageing tissues and organs inside the patient’s body. The treatments will be affordable in large part thanks to robot doctors and surgeons who work almost for free, and to medical patents expiring.
All other aspects of medicine and healthcare will have radically advanced. There will be vaccines and cures for almost all contagious diseases. We will be masters of human genetic engineering and know exactly how to produce people that today represent the top 1% of the human race (holistically combining IQ, genetic health, physical attractiveness, and likable/prosocial personality traits). However, the value of even a genius-IQ human will be questionable since intelligent machines will be so much smarter.
Augmentative cybernetics (including direct brain-to-computer links) will exist and be in common use.
While the traditional, “pure” races of humans will all still exist, notions of “race” and racial identity will be scrambled by the large numbers of mixed-race people who will be alive, and by widespread genetic engineering that will give people combinations of physical traits that were almost unachievable through normal human breeding. Examples might include black people with naturally blue eyes, or East Asians with naturally blonde hair. (Voluntary genetic engineering will also ensure that redheads don’t ever die out.) Some people will even have totally new genes, either synthesized in labs or borrowed from animals, that give them physical traits not found in any preexisting human race, like red eyes or purple hair.
Full-immersion virtual reality (FIVR) will exist wherein AI game masters constantly tailor environments, NPCs and events to suit each player’s needs and to keep them entertained. Every human will have his own virtual game universe where he’s #1. With no jobs in the real world to occupy them, it’s quite possible that a large fraction of the human race will willingly choose to live in FIVR. (Related to the satisfaction paradox) Elements of these virtual environments could be pornographic and sexual, allowing people to gratify any type of sexual fetish or urge with computer-generated scenarios and partners.
More generally, AIs and humans whose creativity is turbocharged by machines will create enjoyable, consumable content (e.g. – films, TV shows, songs, artwork, jokes, new types of meals) faster than non-augmented humans can consume it. As a simple example of what this will be like, assume you have 15 hours of free time per day, that you love spending it listening to music, and each day, your favorite bands produce 16 hours worth of new songs that you really like.
TVs will be capable of true holography, with no visual distortions or flaws.
The vast majority of unaugmented human beings will no longer be assets that can invent things and do useful work: they will be liabilities that do (almost) everything worse than intelligent machines and augmented humans. Ergo, the size of a nation’s human population will subtract from its economic and military power, and radical shifts in geopolitics are possible. Geographically large but sparsely populated countries like Russia, Australia and Canada might become very strong.
The transition to green energy sources will be complete, and humans will no longer be net emitters of greenhouse gases. The means will exist to start reducing global temperatures to restore the Earth to its pre-industrial state, but people will resist because they will have gotten used to the warmer climate. People living in Canada and Russia won’t want their countries to get cold again.
Synthetic meat will taste no different from animal meat, and will be at least as cheap to make. The raising and/or killing of animals for food will be be illegal in many countries, and trends will clearly show the practice heading for worldwide ban.
Meats that are expensive and/or rare today, like Kobe beef steaks, snakes, bats, or even human flesh, will be cheap and widely available thanks to meat synthesis technology.
Cheap, synthetic chicken eggs will also exist and will taste no different from natural eggs.
The means to radical alter human bodies, alter memories, and alter brain structures will be available. The fundamental bases of human existence and human social dynamics will change unpredictably once differences in appearance/attractiveness, intelligence, and personality traits can be eliminated at will. Individuals won’t be defined by fixed attributes anymore.
Brain implants will make “telepathy” possible between humans, machines and animals. Computers, sensors and displays will be embedded everywhere in the built environment and in nature, allowing humans with brain implants to interface with and control things around them through thought alone.
Brain implants and brain surgeries will also be used to enhance IQ, change personality traits, and strengthen many types of skills.
Using brain-computer interfaces, people will be able to make sophisticated songs and pieces of artwork with their thoughts alone.
Technologically augmented humans and androids will have many abilities and qualities that ancient people considered “Godlike,” such as medical immortality, the ability to control objects by thought, telepathy, perfect memories, and superhuman senses.
Flying cars designed to carry humans could be common, but they will be flown by machines, not humans. Ground vehicles will retain many important advantages (fuel efficiency, cargo capacity, safety, noise level, and more) and won’t become obsolete. Instead of flying cars, it’s more likely that there will be millions of small, autonomous helicopters and VTOL aircraft that will cheaply ferry people through dense, national networks of helipads and airstrips. Autonomous land vehicles would take take passengers to and from the landing sites. (https://www.militantfuturist.com/why-flying-cars-never-took-off-and-probably-never-will/)
The notion of vehicles (e.g. – cars, planes, and boats) polluting the air will be an alien concept.
Advanced nanomachines could exist.
Vastly improved materials and routine use of very advanced computer design simulations (including simulations done in quantum computers) will mean that manufactured objects of all types will be optimally engineered in every respect, and might seem to have “magical” properties. For example, a car will be made of hundreds of different types of alloys, plastics, and glass, each optimized for a different part of the vehicle, and car recalls will never happen since the vehicles will undergo vast amounts of simulated testing in every conceivable driving condition in 1:1 virtual simulations of the real world.
Design optimization and the rise of AGI consumption will virtually eliminate planned obsolescence. Products that were deliberately engineered to fail after needlessly short periods, and “new” product lines that were no better than what they replaced, but had non-interchangeable part sizes would be exposed for what they were, and AGI consumers would refuse to buy them. Production will become much more efficient and far fewer things will be thrown out.
Relatively cheap interplanetary travel (probably just to Mars and to space stations and moons that are about as far as Mars) will exist.
Androids that are outwardly indistinguishable from humans will exist, and humans will hold no advantages over them (e.g. – physical dexterity, fine motor control, appropriateness of facial expressions, capacity for creative thought). Some androids will also be indistinguishable to the touch, meaning they will seem to be made of supple flesh and will be the same temperature as human bodies. However, their body parts will not be organic.
Sex robots will be indistinguishable from humans.
Android assassins like the T-800s from the Terminator films will exist. They will look identical to humans, will be able to blend into human populations, track down targets, and kill or abduct them. As in the films, these androids will be stronger, more durable, and more skilled with weapons than we are.
Robots that are outwardly identical to sci-fi and fantasy characters and extinct animals, like grey aliens, elves, fairies, giant house cats, and dinosaurs, will exist and will occasionally be seen in public. Some weird person will want their robot butler to look like bigfoot, and at least one hobbyist will build a life-sized robotic dragon that can fly and spit fire. https://www.mentalfloss.com/article/503967/could-game-throness-dragons-really-fly-we-asked-some-experts
Humans interested in extreme body modifications will be able to surgically alter themselves to look like many of those creatures.
Machines that are outwardly indistinguishable from animals will also exist, and they will have surveillance and military applications.
Drones, miniaturized smart weapons, and AIs will dominate warfare, from the top level of national strategy down to the simplest act of combat. The world’s strongest military could, with conventional weapons alone, destroy most of the world’s human population in a short period of time.
It will be possible for one country to build an army of killer robots that equals the size of the whole human population.
The construction and daily operation of prisons will have been fully automated, lowering the monetary costs of incarceration. As such, state prosecutors and judges will no longer feel pressure to let accused criminals have plea deals or to give them shorter prison sentences to ease the burdens of prison overcrowding and high overhead costs.
The term “millionaire” will fall out of use in the U.S. and other Western countries since inflation will have rendered $1 million USD only as valuable as $90,000 USD was in 2019 (assuming a constant inflation rate of 3.0%).
There will still be major wealth and income inequality across the human race. However, wealth redistribution, better government services, advances in industrial productivity, and better technologies will ensure that even people in the bottom 1% have all their basic and intermediate life needs meet. In many ways, the poor people of 2100 will have better lives than the rich people of 2020.
2101 – 2200 AD
Humans will definitely stop being the dominant intelligent life forms on Earth.
Many “humans” will be heavily augmented through genetic engineering, other forms of bioengineering, and cybernetics. People who outwardly look like the normal humans of today might actually have extensive internal modifications that give them superhuman abilities. Non-augmented, entirely “natural” humans like people in 2019 will be looked down upon in the same way you might today look at a very low IQ person with sensory impairments. Being forced by your biology to incapacitate yourself for 1/3 of each day to sleep will be tantamount to having a medical disability.
Due to a reduced or nonexistent need for sleep among intelligent machines and augmented humans and to the increased interconnectedness of the planet, global time zones will become much less relevant. It will be common for machines, humans, businesses, and groups to use the same clock–probably Coordinated Universal Time (UTC)–and for activity to proceed on a 24/7 basis, with little regard of Earth’s day/night cycle.
Physical disabilities and defects of appearance that cause untold anguish to people in 2019 will be easily and cheaply fixable. For example, male-pattern baldness and obesity will be completely ameliorated with minor medical interventions like pills or outpatient surgery. Missing or deformed limbs will be easily replaced, all types of plastic surgery (including sex reassignment) will be vastly better and cheaper than today, and spinal cord damage will be totally repairable. The global “obesity epidemic” will disappear. Transsexual people will be able to seamlessly alter their bodies to conform with their preferred genders, or to alter their brains so their gender identities conform with the bodies they were born with.
These advanced body modification abilities will partly be thanks to medical micro- and nanomachines that will be able to travel through a person’s bloodstream and flesh, and to precisely kill small groups of cells (including bone) or stimulate cell proliferation. Over the course of a few sessions, a person could finely sculpt their nose, cheeks or private parts to match whatever they wanted.Genetic engineering for beauty will probably become less important as a result.
All sleep disorders will be curable thanks to cybernetics that can use electrical pulses to quickly initiate sleep states in human brains. The same kinds of technologies will also reduce or eliminate the need for humans to sleep, and for people to control their dreams.
Brain-computer interfaces will let people control, pre-program, and, to a limited extent, record their dreams.
Through electrical signaling and chemical releases, the brain implants will be able to induce any type of mental or emotional state. This will include altered states of consciousness, like lucid dreaming, meditation, or intoxication (as a result, mind-altering drugs could become obsolete). A person might have to go through a “calibration period” where the implants would monitor and record their brain activity while they experienced different things, and then, the user would experiment with the implant to see how well it could induce the recorded brain states. Through a process of guided trial and error, they would become masters of their own minds. This ability would make human life richer and more productive, as people could have valuable experiences during portions of the day when they would otherwise be bored or “switched off,” and to even do useful problem-solving tasks in their sleep. Alternatively, the ability to induce feelings of blinding pleasure could lead to a major addiction problem among humans, and widen the productivity/usefulness gap between our species and intelligent machines.
Direct brain-to-computer interfaces and other advanced technologies will let humans enter virtual reality worlds that seem no different from the real world (the “Matrix scenario”), and to remotely control robot bodies located anywhere in the real world, with fully lifelike levels of sensory richness and fusion. Able to control perfect robot bodies of any design in the real world, and to take on any form in virtual worlds, some humans will have no use for real, fixed-form bodies, and will dispense with them, instead existing as “brains in jars.”
Some “humans” will lack fixed, corporeal forms; they will be able to extensively modify their original bodies or to switch bodies at will. A person could take the form of something nonhuman, like a terrestrial squid. They exist as disembodied, cybernetically enhanced brains in life support containers that can assume control over any physical bodies they want, either by remotely controlling them through the internet, or by physically inserting their life support containers into matching slots in the bodies.
The line between “biological” and “synthetic” will bluras artificial objects take on some of the properties of organic matter and as they are integrated into originally biological life forms. Examples include humans who have artificial limbs and organs that are soft, supple, and interface with their nervous systems as well as natural limbs and organs; humans whose bodies contain special lines of cells meant to save and store non-genomic data as DNA; cybernetic implants that are soft and capable of growing inside a person’s body; machines that can heal their own bodies; and microscopic, self-reproducing machines that can thrive indefinitely in human bodies, in wild animals, or in other life forms and even be transferred between individuals, like benign diseases.
Almost all of today’s diseases will be cured.
The means to halt and reverse human aging will be created. The human population will come to be dominated by people who are eternally young and beautiful.
Humans and machines will be immortal. Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who lived their lives knowing they were doomed to deteriorate and die.
Extreme longevity, better reproductive technologies that eliminate the need for a human partner to have children, and robots that do domestic work and provide companionship (including sex) will weaken the institution of marriage more than any time in human history. An indefinite lifetime of monogamy will be impossible for most people to commit to.
At reasonable cost, it will be possible for women to create healthy, genetically related children at any point in their lives, and without using the 2019-era, pre-menopausal egg freezing technique. For example, a 90-year-old, menopausal woman will be able to use reproductive technologies to make a baby that shares 50% of her DNA.
Opposite-sex human clones will exist. Such a clone would share 22-1/2 of their 23 chromosome pairs with their “original.” Only the final sex chromosome, which would be either a “Y” or a second “X”, would differ.
Immortality, the automation of work, and widespread material abundance will completely transform lifestyles. With eternity to look forward to, people won’t feel pressured to get as rich as possible as quickly as possible. As stated, marriage will no longer be viewed as a lifetime commitment, and serial monogamy will probably become the norm. Relationships between parents and offspring will change as longevity erases the disparities in generational outlook and maturity that traditionally characterize parent-child interpersonal dynamics (e.g. – 300-year-old dad doesn’t know any better than his 270-year-old son). The “factory model” of public education–defined by conformity, rote memorization, frequent intelligence testing, and curricula structured to serve the needs of the job market–will disappear. The process of education will be custom-tailored to each person in terms of content, pacing, and style of instruction. Students will be much freer to explore subjects that interest them and to pursue those that best match their talents and interests.
Radically extended human lifespans mean it will become much more common to have great-grandparents around. A cure for aging will also lead to families where members separated in age by many decades look the same age and have the same health. Additionally, older family members won’t be burdensome since they will be healthy.
The human population might start growing again thanks to medical immortality, to advanced fertility technologies including artificial wombs and cloning, and to robots that help raise children, reducing the workload for human parents. The human race won’t die out thanks to persistently low birthrates.
Thanks to radical genetic engineering, there will be “human-looking,” biological people among us that don’t belong to our species, Homo sapiens. Examples could include engineered people who have 48 chromosomes instead of 46, people whose genomes have been shortened thanks to the deletion of junk DNA, or people who look outwardly human but who have radically different genes within their 46 chromosomes, so they have different numbers or arrangements of internal organs (like two hearts), or even new types of internal organs, such asbird-like lung. Such people wouldn’t be able to naturally breed with Homo sapiens, and would belong to new hominid species.
Extinct species for which we have DNA samples (ex – from passenger pigeons on display in a museum) will “resurrected” using genetic technology.
The global mass surveillance network will encompass unpopulated areas and wilderness areas, protecting animals from poaching. Extinctions of large, wild animals will stop.
The technology for safely thawing humans out of cryostasis and returning them to good health will be created.
Suspended animation will become a viable alternative to suicide. Miserable people could “put themselves under,” with instructions to not be revived until the ill circumstances that tormented them had disappeared or until cures for their mental and medical problems were found.
A sort of “time travel” will become possible thanks to technology. Suspended animation will let people turn off their consciousnesses until any arbitrary date in the future. From their perspective, no time will have elapsed between being frozen and being thawed out, even if hundreds of years actually passed between those two events, meaning the suspended animation machine will subjectively be no different from a time machine to them. FIVR paired with data from the global surveillance networks will let people enter highly accurate computer simulations of the past. The data will come from sources like old maps, photos, videos, and the digital avatars of people, living and dead. The computers simulations of past eras will get less accurate as the dates get more distantand the data scarcer.
It will be possible to upload human minds to computers. The uploads will not share the same consciousness as their human progenitors, and will be thought of as “copies.” Mind uploads will be much more sophisticated than the digitally immortal avatars that will come into existence in the 2030s.
Different types of AGIs with fundamentally different mental architectures will exist. For example, some AGIs will be computer simulations of real human brains, while others will have totally alien inner workings. Just as a jetpack and a helicopter enable flight through totally different approaches, so will different types of AGIs be capable of intelligent thought.
Gold, silver, and many other “precious metals” will be worth far less than today, adjusting for inflation, because better ways of extracting (including from seawater) them will have been developed. Space mining might also massively boost supplies of the metals, depressing prices. Diamonds will be nearly worthless thanks to better techniques for making them artificially.
The first non-token quantities of minerals derived from asteroid mining will be delivered to the Earth’s surface. (Finding an asteroid that contains valuable minerals, altering its orbit to bring it closer to Earth, and then waiting for it to get here will take decades. No one will become a trillionaire from asteroid mining until well into the 22nd century.)
Synthetic life forms will colonize parts of the world uninhabitable to humans, like mountaintops, oceans (both on the surface and under it), and maybe even underground regions. Intelligent and semi-intelligent machines will be common sights, even in remote areas.
Intelligent life from Earth will colonize the entire Solar System, all dangerous space objects in our System will be found, the means to deflect or destroy them will be created, and intelligent machines will redesign themselves to be immune to the effects of radiation, solar flares, gamma rays, and EMP. As such, natural phenomena (including global warming) will no longer threaten the existence of civilization. Intelligent beings will find it terrifying and tragic to contemplate what it was like for humans in the past, who were confined to Earth and at the mercy of planet-killing disasters.
“End of the World” prophecies will become far less relevant since civilization will have spread beyond Earth and could be indefinitely self-sustaining even if Earth were destroyed. Some conspiracy theorists and religious people would deal with this by moving on to belief in “End of the Solar System” prophecies, but these will be based on extremely tenuous reasoning.
The locus of civilization and power in our Solar System will shift away from Earth. The vast majority of intelligent life forms outside of Earth will be nonhuman. [Upon further reflection, I think it will take longer for this milestone to pass. For one thing, even as the off-world population intelligent machines and their infrastructure quickly grows, so will the same things keep growing on Earth.]
A self-sustaining, off-world industrial base will be created.
It will be possible to safely smoke cigarettes in more advanced types of space ships.
Spy satellites with lenses big enough to read license plates and discern facial features will be in Earth orbit.
Space probes made in our Solar System and traveling at sub-light speeds will reach nearby stars.
All of the useful knowledge and great works of art that our civilization has produced or discovered could fit into an advanced memory storage device the size of a thumb drive. It will be possible to pair this with something like a self-replicating Von Neumann Probe, creating small, long-lived machines that would know how to rebuild something exactly like our civilization from scratch. Among other data, they would have files on how to build intelligent machines and cloning labs, and files containing the genomes and mind uploads of billions of unique humans and non-human organisms. Copies of existing beings and of long-dead beings could be “manufactured” anywhere, and loaded with the personality traits and memories of their predecessors. Such machines could be distributed throughout our Solar System as an “insurance policy” against our extinction, or sent to other star systems to seed them with life. Some of the probes could also be hidden in remote, protected locations on Earth.
We will find out whether alien life exists on Mars and the other celestial bodies in our Solar System.
Intelligent machines will get strong enough to destroy the human race, though it’s impossible to assign odds to whether they’ll choose to do so.
If the “Zoo Hypothesis” is right, and if intelligent aliens have decided not to talk to humans until we’ve reached a high level of intellect, ethics, and culture, then the machine-dominated civilization that will exist on Earth this century might be advanced enough to meet their standards. Uncontrollable emotions and impulses, illogical thinking, tribalism, self-destructive behavior, and fear of the unknown will no longer govern individual and group behavior. Aliens could reveal their existence knowing it wouldn’t cause pandemonium.
The government will no longer be synonymous with slowness and incompetence since all bureaucrats will be replaced by machines.
Technology will be seamlessly fused with humans, other biological organisms, and the environment itself.
It will be cheaper and more energy-efficient to grow or synthesize almost all types of food in labs or factories than to grow and harvest it in traditional, open-air farms. Shielded from the weather and pests and not dependent on soil quality, the amounts and prices of foods will be highly consistent over time, and worries about farmland muscling out or polluting natural ecosystems will vanish. Animals will no longer be raised for food. Not only will this benefit animals, but it will benefit humans since it will eliminate a a major source of communicable disease (e.g. – new influenza strains originate in farm animals and, thanks to close contact with human farmers, evolve to infect people thanks to a process called “zoonosis”).
Additionally, the means will exist to cheaply and artificially produce non-edible organic products, like wool and wood, in industrial quantities. This means anyone will be able to buy animal products that are very expensive today, like snakeskin boots or bear rugs. Unlimited quantities of perfectly simulated animal products that have useful properties, like pillow feathers (softness) or high-grade wool (heat insulation), will be available, and no animals will need to be harmed to make them. This will greatly help endangered species that are poached for their parts, like elephants killed for their ivory tusks. Lab-synthesized wood that is superior to “old-growth” timber will also exist.
The ability to cheaply make large quantities of organic products will lead to the creation of bizarre objects that no one conceived of before, like vehicle frames made of single pieces of bone.
A global network of sensors and drones will identify and track every non-microscopic species on the planet. Cryptids like “bigfoot” and the “Loch Ness Monster” will be definitively proven to not exist. The monitoring network will also make it possible to get highly accurate, real-time counts of entire species populations. Mass gathering of DNA samples–either taken directly from organisms or from biological residue they leave behind–will also allow the full genetic diversity of all non-microscopic species to be known.
That same network of sensors and machines will let us monitor the health of all the planet’s ecosystems and to intervene to protect any species. Interventions could include mass, painless sterilizations of species that are throwing the local ecology out of balance, mass vaccinations of species suffering through disease epidemics, reintroductions of extinct species, or widescale genetic engineering of a species.
The technology and means to implement David Pearce’s global “benign stewardship” of nonhuman organic life will become available. (https://youtu.be/KDZ3MtC5Et8) After millennia of inflicting damage and pain to the environment and other species, humanity will have a chance to inaugurate an era free of suffering.
The mass surveillance network will also look skyward and see all anomalous atmospheric phenomena and UFOs.
Robots will clean up all of the garbage created in human history.
Every significant archaeological site will be excavated and every shipwreck found. There will be no work left for people in the antiquities.
Dynamic traffic lane reversal will become the default for all major roadways, sharply increasing road capacity without compromising safety. Autonomous cars that can instantly adapt to changes in traffic direction and that can easily avoid hitting each other even at high speeds will enable the transformation.
The Imperial system of weights and measures will fall out of use worldwide. Intelligent machines and posthumans will be able to switch to Metric without a problem. The same nimbleness of mind might also let them break from the ingrained traditions created by past humans and adopt other new standards, like new alphabets, numerals, and languages.
A gem from a “CIA spy” this August: “In my assessment, Vladimir Putin is winning. Russia is winning. They’re winning in Ukraine but they’re also winning the battle of influence with the West. They’re winning in the face of economic sanctions. They’re winning…[Russia will take over all of southern Ukraine, including Mariupol, the Kherson region and Odessa] and into Moldova. I believe all of that will happen before the fall…Fall of this year.” https://youtu.be/T3FC7qIAGZk?t=756
Henry Kissinger talks about the Ukraine War, and also the threat of AI:
“Ukraine has become a major state in Central Europe for the first time in modern history. Aided by its allies and inspired by its President, Volodymyr Zelensky, Ukraine has stymied the Russian conventional forces which have been overhanging Europe since the second world war. And the international system – including China – is opposing Russia’s threat or use of its nuclear weapons.
This process has mooted the original issues regarding Ukraine’s membership in Nato. Ukraine has acquired one of the largest and most effective land armies in Europe, equipped by America and its allies. A peace process should link Ukraine to Nato, however expressed. The alternative of neutrality is no longer meaningful, especially after Finland and Sweden joined Nato. This is why, last May, I recommended establishing a ceasefire line along the borders existing where the war started on 24 February. Russia would disgorge its conquests thence, but not the territory it occupied nearly a decade ago, including Crimea. That territory could be the subject of a negotiation after a ceasefire.” https://www.spectator.co.uk/article/the-push-for-peace/
The reality of war: Drone footage of a Russian soldier religiously crossing himself during an enemy artillery barrage. https://youtu.be/XjWFryBJMvs
These calculations show how a small nuclear weapon detonated a few hundred feet above the ground would produce almost no radioactive fallout–no significant amounts of radioactive dust would drift far from the site. If Putin became desperate, such a nuclear strike against a cluster of Ukrainian military units could make sense to carry out. https://www.thedrive.com/the-war-zone/just-how-radioactive-are-low-yield-nuclear-weapons
Ukraine is struggling to maintain its huge force of foreign-made weapons (including Russian captures and donations from numerous Western countries) due to non-interchangeable spare parts, lack of familiarity with maintenance procedures, and other human factors. A military AI like Skynet wouldn’t have these problems, it would know how to maintain, fix and use every kind of weapon, or could figure it out quickly and never forget. It would also keep an up-to-date inventory of all weapons, equipment and parts it had. Logistics that human armies find impossible or too costly to support would become possible. Future machine armies might be LESS standardized than human armies. https://www.thedrive.com/the-war-zone/ukraine-situation-report-kyiv-struggling-to-keep-captured-weapons-in-the-fight
I roll my eyes at people who claim old weapons aren’t obsolete so long as you only use them in roles that respect their limitations. This has come up a lot during the Ukraine War, with some troops getting WWI bolt action rifles and 60 year old tanks. An important criterion for being obsolete is whether your weapon has gotten so old that its value on the antique market is higher than what it would cost to buy a newer, better weapon intended for the same role. For example, a WWII T-34 tank that Ukraine has laying around could be sold to an international collector for $230,000, which is more than enough to buy a T-72. The same is true for the WWI bolt action rifles. Selling one would bring in enough money to buy a full auto AK-47. https://www.rbth.com/defence/2017/04/26/how-to-buy-an-old-soviet-tank-for-the-price-of-a-fancy-car_750701
The suicide drones that Azerbaijan used against Armenia two years ago were cruder than I thought. They were obsolete biplanes, fixed up just enough to do a final flight, and packed with explosives. Human pilots flew them into the air, lined them up with their targets in Armenia, and then jumped out and parachuted to the ground. Russia is planning to copy this idea, but they actually have the money and technology to fit the biplanes with computer autopilots. https://youtu.be/z7I3Illsuqg
The A-10 is badass, but also obsolescent: It is too vulnerable to newer air-to-ground missiles, and its mighty 30mm gun isn’t strong enough to punch through the advanced armor of modern tanks. The new idea is to use it for attacking ships, which it could do, albeit inefficiently. The recent moves by Azerbaijan and Russia to convert obsolete biplanes into expendable drones makes me suspect the same will be done to planes like the A-10 once the technology is better and cheaper. Sending old A-10s and 1960s tanks into battle against poor odds might make military sense if the vehicles are piloted by machines whose lives mean nothing. https://www.businessinsider.com/a10-warthog-trying-a-new-role-decoying-enemy-air-defense-2022-12
After discovering large reserves of natural gas under the North Sea, Britain’s government instituted a national program to upgrade all appliances to use the fuel. Most of them had been designed to run off of “town gas,” which is made from coal. Over just eight years, 40 million appliances belonging to 14 million customers were modified. Once the global worker robot population gets into the tens of millions, major changes to infrastructure like this will become financially possible, such as changing national railroad gauges and electrical outlets. The path dependencies humans emplaced won’t last forever. https://www.resilience.org/stories/2020-03-10/share-the-great-switch-lessons-from-when-14-million-homes-and-businesses-changed-fuel-in-less-than-a-decade/
‘[Researchers] from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), Autodesk Research, and Texas A&M University came up with a method to automatically assemble products that’s accurate, efficient, and generalizable to a wide range of complex real-world assemblies. Their algorithm efficiently determines the order for multipart assembly, and then searches for a physically realistic motion path for each step.’ https://youtu.be/2Xw01yyg5So
An essay on how language models could lead to the creation of superintelligent AI. I like this passage: ‘The totality of humanity’s recorded knowledge about the world — our shared world model — is a lower bound on what language models can learn in the limit[3]. We would expect that sufficiently powerful language models would be able to synthesise said shared world model and make important novel inferences about our world that is implicit in humanity’s recorded knowledge, but which have not yet been explicitly synthesised by anyone[4].’ https://www.lesswrong.com/posts/MmmPyJicaaJRk4Eg2/simulators-thesis
For most of the 20th century, a sizeable minority of geophysicists believed that the Earth’s diameter had grown over billions of years. Among them, the most plausible explanation involved slow changes to the gravitational constant: If gravity gets weaker, then all the tiny rock particles that make up the Earth are not attracted to each other as much, so they spread out more, causing the whole planet to get wider. https://www.chemeurope.com/en/encyclopedia/Expanding_earth_theory.html
Authoritarians on the left and right wings have essentially the same mindsets: Intolerance for people different from themselves, a lust for power, an instinct for what people on their side are thinking and which people in the group are powerful or weak, and an abnormal willingness to engage in political violence.
“It’s a mistake to think of authoritarianism as a right-wing concept, as some researchers have in the past,” he says. “We found that ideology becomes secondary. Psychologically speaking, you’re an authoritarian first, and an ideologue only as it serves the power structure that you support.” https://phys.org/news/2021-09-left-wing-authoritarians-key-psychological-traits.html
When a male [Anglerfish] finds a female, he bites into her skin, and releases an enzyme that digests the skin of his mouth and her body, fusing the pair down to the blood-vessel level.[26] The male becomes dependent on the female host for survival by receiving nutrients via their shared circulatory system, and provides sperm to the female in return. After fusing, males increase in volume and become much larger relative to free-living males of the species. They live and remain reproductively functional as long as the female lives, and can take part in multiple spawnings.[4] This extreme sexual dimorphism ensures that when the female is ready to spawn, she has a mate immediately available.[27] Multiple males can be incorporated into a single individual female with up to eight males in some species, though some taxa appear to have a “one male per female” rule.[4] https://en.m.wikipedia.org/wiki/Anglerfish
Britain’s NHS will start offering free genetic sequencing for outwardly healthy newborns, to screen for 200 genetic disorders. It’s a step in the right direction, but the tests should really be done before the babies are born, so the parents can know about any disorders beforehand and abort pregnancies the realize they can’t handle. https://www.bbc.com/news/health-63906892
Jonas and Wyatt Maines are identical twin brothers. However, Wyatt gender-identifies as female, and used hormone therapy during their teens to help transition into a transwoman. Wyatt now goes by the first name “Nicole.” Their example shows that gender identity is at least partly rooted in brain development, and not exclusively in genetics, and their differences in appearance make for an interesting study of sexual dimorphism. https://time.com/4074959/see-how-twin-boys-became-brother-and-sister/
Different races of people tend to have different brain shapes. There’s even shape variation within races, allowing a person’s ancestral region of origin to be determined with fair accuracy. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786069/
This Bill Gates COVID-19 prediction from August 2021 would have been right had it not been for China’s bungling: “You have to admit there’s been trillions of dollars of economic damage done and a lot of debts, but the innovation pipeline on scaling up diagnostics, on new therapeutics, on vaccines is actually quite impressive. And that makes me feel like, for the rich world, we should largely be able to end this thing by the end of 2021, and for the world at large by the end of 2022. That is only because of the scale of the innovation that’s taking place.” https://www.wired.com/story/bill-gates-on-covid-most-us-tests-are-completely-garbage/
“The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. Some metals such as ferrous alloys and titanium alloys have a distinct limit, whereas others such as aluminum and copper do not and will eventually fail even from small stress amplitudes.” In theory, a wrench made of steel could last forever if you never applied enough force to it to exceed its fatigue limit. https://en.m.wikipedia.org/wiki/Fatigue_limit
Lamps that generate “far UV” light have been shown to kill airborne pathogens, but without harming the skin and eyes of humans, as regular UV lamps do. https://www.nature.com/articles/s41598-022-08462-z
“Superagers” are people over 80 whose memories are as good as people 20 years younger. Studies show that their brain anatomy is slightly different, probably accounting for their superior traits. Imagine if genetic engineering turned all humans into superagers. https://www.cnn.com/2022/11/26/health/superager-secrets-good-memory-wellness/index.html
In the year 2022, Earth is encircled by satellites armed with nuclear missiles. Manned, private spaceships rendezvous with them for regular maintenance and repair. The film centers around one such ship, named Spacecore 1, as its mission takes it around the dark side of the Moon.
A mysterious malfunction cripples Spacecore 1’s systems, leaving it adrift and with only enough oxygen for 24 hours. Unable to summon help with distress calls, the crew faces certain death. Luckily, the vintage Space Shuttle Endeavor appears from nowhere and docks itself with Spacecore 1, sharing its power and oxygen. Though the Shuttle’s behavior shows it is under intelligent control, it is strangely uncommunicative.
After docking, two of Spacecore 1′s crewmen enter Endeavor to find out who is piloting it. The craft is disheveled and is carrying rock samples mined from the dark side of the Moon. Chillingly, they discover the mutilated corpse of an astronaut, which they bring back to Spacecore 1’s infirmary for examination. This proves to be a terrible mistake, as it turns out the dead astronaut’s body hosts an evil force that can attack other people and transfer its essence to them. One by one, the crew are corrupted and killed.
Dark Side of the Moon was a bad, low-budget movie that clearly tried to copy better sci-fi films that came in the decade before it (Alien and The Thing). The acting and dialog were wooden, and the second half of the film went in circles as members of the crew were infested with the evil spirit, died, and became paranoid of each other, repeat, repeat. The special effects and set design were unimpressive, and many scenes were so dimly lit that it was hard to tell what was going on.
The movie also had some ridiculous elements, like people smoking cigarettes inside spaceships, the crew having several assault rifles even though their mission only involved fixing unmanned satellites, egregious sexual harassment, and the interior of the Endeavor being several times larger than it is in real life (secret rooms, very high ceiling, takes a long time to search).
The film’s premise, that a mysterious evil force is stalking the crew of a stranded spaceship and making them paranoid, was interesting and thus its only bright spot. It was executed vastly better seven years later in the movie Event Horizon.
If you value your scarce time on Earth even a little bit, then reading this review should be the closest you ever get to watching Dark Side of the Moon.
Analysis:
There are large, manned spaceships.Spacecore 1 is, by our standards, an enormous spaceship. None of the characters ever mention its dimensions, but in special effects shots where it is docked with the Shuttle Discovery, it looks roughly ten times bigger than the latter. That would make Spacecore 1 significantly larger than even the International Space Station, which is the largest object humans have so far put into space.
Spacecore 1‘s exterior is also not streamlined, suggesting it is not designed to land on Earth or any other planet with an atmosphere. It was assembled in space and is meant to stay there. Again, the ISS and the Chinese space station are the only two craft in existence that meet those criteria. However, because they can’t leave Earth’s low orbit, they don’t qualify as “spaceships.”
Spaceships like Spacecore 1 haven’t been built yet, though our failure to do so owes to a lack of political will rather than technology falling short. If the U.S. or a group of advanced countries had dedicated itself towards building something like Spacecore 1 starting in the 1990s, it could be flying out to lunar orbit by now.
I predict the first relatively large, manned spaceship that is designed to stay in space could exist as early as the 2030s, in the form of a reusable ferry that moves people between Earth and Mars. At both ends of its repeating journey, smaller craft designed to transfer passengers and cargo from orbit to the surface and vice versa would dock with the spaceship.
Also, if we ever built a spaceship meant to repair and refuel satellites, it wouldn’t need to be nearly as big as Spacecore 1, and probably wouldn’t need a human crew. Our largest unmanned satellites orbiting Earth are about as big as buses, so a craft designed to refuel one of them and even replace several of its components would need even less interior space of its own to store the necessary cargo. There’s no reason a repair ship needs to be bigger than the thing it is meant to repair.
The new X-37 space plane is said to be able to service satellites in orbit. It is much smaller than even the Space Shuttles, is unmanned and remotely controlled from Earth.
There are satellites that launch nuclear missiles.Spacecore 1′s mission is to fix and maintain military satellites that are armed with nuclear missiles. The Outer Space Treaty of 1967 banned all countries from putting nuclear weapons in space, and to the best of our knowledge, no one has ever violated it. This largely owes to the fact that, in spite of how menacing the idea of a nuclear missile in space is, it’s impractical and brings little military benefit. Missiles stationed on the Earth’s surface are much cheaper, can hit any target on the planet, and can be hidden from enemies.
Space-based nuclear missiles would cost a fortune to put into orbit, would not be able to strike targets that ground-based missiles couldn’t, and would be impossible to hide from any enemy nation that had telescopes. Expensive nuclear weapon satellites could be destroyed by much cheaper space rockets designed to enter their well-known orbital paths and collide with them.
Manned spaceships travel beyond the orbit of the Moon. As the film’s title implies, it is set on the dark side of the Moon, or more precisely, on two spaceships that are several hundred or thousand miles above the dark side of the Moon. The last time humans ever went that far into space was 50 years ago when the astronauts of Apollo 17 orbited the Moon. At that moment, they were about 200,000 miles from Earth. Since the end of the Apollo Program, no human has ventured more than a few hundred miles into space.
Humans will probably match our old distance record this decade when astronauts return to the Moon. Fittingly, at this moment, NASA’s first “Orion” space capsule is orbiting the Moon as the first step in a multi-year plan to send humans back in one of the capsules. NASA’s program for accomplishing this has suffered years of delays, and in an alternate universe where the agency worked more efficiently, got more money, or somehow got a little lucky, the program’s timetable could be more advanced, and in 2022, an Orion capsule carrying the first humans would be going around the dark side of the Moon now (right now, the target date for that is in 2024).
Moreover, as early as the 2030s, we could shatter our space distance record by sending people to Mars. Depending on where the two planets are in their orbital cycles, the distance between them varies from 33.9 million to 249 million miles.
That said, I don’t think manned space ships will ever be needed to fix and maintain nuclear-armed satellites or ANY kind of satellites that are as far from the Earth as the Moon. This is because nearly all satellites are within 36,000 miles of Earth, while the Moon is 200,000 miles away. Satellites intended to fire nuclear missiles at Earth would also need to be close to strike targets in a timely fashion–if a satellite at Moon’s distance fired a nuclear missile at Earth, it might take days to reach its target (the Apollo spacecraft took three days), giving the enemy time to see the launch, determine its trajectory, and send its own intercept rockets into space.
There are androids that can carry on conversations. Spacecore 1’s main computer is embodied by a female android called “Lesli.” She is always seated in a chair in a special room, and she can answer questions about the ship’s systems and many other subjects. As is typical of sci fi films, she speaks in an emotionless voice. This level of AI technology exists: chatbots using GPT-3 technology can converse almost as intelligently and as fluidly with people as Lesli, and speech synthesizer technology exemplified by Amazon Alexa sounds as realistic as Lesli’s voice.
Moreover, we can build androids that are almost as lifelike as Lesli. “Ameca” is a crude android with “Smooth, lifelike motion and advanced facial expression capabilities” as well as the ability to move its arms to make human-like gestures. In this demonstration video, Ameca is paired with GPT-3 and a high-quality speech synthesizer to carry on conversations with humans surprisingly well:
“Sophia” is another android, but with artificial skin and colored eyes to make it look more lifelike than Ameca:
Combining Ameca’s superior range of physical movement and facial expression with Sophia’s human-like skin and eyes would result in an android that approximated a human’s appearance reasonably well. It wouldn’t look as real as Lesli from the film, but that’s an unfair comparison since the android was played by a real human actress, and either due to the filmmakers lacking imagination or lacking money, they didn’t give her any makeup or costuming to make her look more robotic.
Our androids also match Lesli’s level of mobility, which is to say they have none. Lesli has legs, but as stated, she never gets up from her chair, even during a film scene where the evil being attacks and presumably kills her. This indicates that Lesli’s legs are non-functional and are probably just there for show. Ameca also has non-working legs, and Sophia has nothing.
Though the movie’s depiction of the state of android technology is 2022 is accurate, there are no androids inside any of our spacecraft. This is because space mission budgets don’t allow for wasting money on several hundred pounds of dead weight in the form of a human-sized robot that stays fixed to a chair. Whenever astronauts need to talk to their craft’s central computer, they do so through keyboards and screen displays. All the same intelligence is still embodied in the ship, but without need to a bulky physical manifestation of itself.
There will be artificial gravity. There’s no scene in the film where anyone is weightless (again, this is surely due to a lack of money during production), and Spacecore 1 and Discovery have gravity. In special effects shots of the ships, we never see them rotating, so they weren’t using centrifugal force to create gravity, meaning it was being “generated” from some device in the floor. As I’ve said in previous reviews, this technology is impossible since the laws of physics don’t allow for the creation of gravity this way.
Astronauts smoke cigarettes inside spaceships. In several scenes, crewmen smoke cigarettes inside Spacecore 1. In reality, this has always been forbidden due to safety concerns (for one, spacecraft have more oxygen-rich atmosphere mixtures than Earth’s, so a lit cigarette is a much worse fire hazard), and there is no record of any person smoking inside any spaceship or space station. Even the Soviets, who were known to be more risk-taking than anyone else, never smoked in space.
However, in the far future, there will be spaceships that are larger, more advanced, and more luxurious than even Spacecore 1, and they could have small “smoking lounges” that would be sealed off from the rest of the vessel and have design features to filter the smoke from the air and prevent lit cigarettes from sparking fires. At some point in the future, people will smoke cigarettes in space.
There are guns in space ships for astronauts to use. In the film, there’s a gun rack on Spacecore 1 full of five or six assault rifles. Once things take a turn for the worse, the weapons are distributed and the crewmen start spraying bullets at each other. Ridiculously, the ship’s hull is never punctured.
There actually have long been guns in space. Soviet/Russian Soyuz space capsules have emergency kits for the cosmonauts to use if they accidentally land in remote parts of Earth and have to wait for rescue. The kits contain semi-auto pistols for defense against wild animals. A Soyuz is permanently docked at the ISS, so there is a gun in space right now that any crewman could grab and use against the others.
Part of the reason why there has never been a shooting incident in space is that it might be suicidal for the attacker since the bullet could put a hole in the hull, causing the oxygen to leak out, or it could destroy an important system like a pressurized fuel tank or central computer. The more powerful the gun, the higher the risk of such a disaster gets, making an assault rifle a particularly bad choice to put in a spaceship. Even if the shooter hits his human target, a rifle bullet could pass through them and drill through whatever is behind them.
A small pistol is actually the best choice for any conceivable type of space combat. Its small size makes it ideal for the tight confines of a spaceship or space station, and its weaker bullets 1) minimize recoil forces on the shooter, which is important in the weightlessness of space, 2) are well-suited against people since no one has body armor, and 3) carry less risk of causing collateral damage like hull punctures.
The Space Shuttles are retired. In the film, it is said that the Space Shuttles were retired in 1992 after the Endeavor’s disappearance. They were actually retired in 2011, due to high operating costs and safety problems.
In conclusion, as bad as Dark Side of the Moon was, it depicted several aspects of 2022 technology accurately. And where reality did fall short of the filmmakers’ expectations, it was mostly due to us choosing to allocate our money in more sensible directions, and not due to the technology staying fundamentally out of reach for us. We COULD HAVE put nuclear-armed satellites in orbit. We COULD HAVE built a large, manned spaceship to service those satellites. We COULD HAVE put an immobile android in the spaceship to interact with the astronauts. We COULD HAVE also put assault rifles in the ship.