Interesting articles, September 2020

More bad news for the once-famed surgeon who made a name for himself transplanting tracheas grown with stem cells into terminally ill people.
https://apnews.com/article/international-news-sweden-bjork-stockholm-paolo-macchiarini-1baeaacd9ad2d19a07acd423d68be3bd

The first person ever cured of HIV just died of cancer. In the end, something will get you…unless maybe you’re an AI with a highly distributed and redundant consciousness.
https://apnews.com/article/berlin-california-archive-palm-springs-67706de65ced0f5bcb7859c34cd51f5a

In heavily inbred families, just “one generation of outbreeding can mask the deleterious alleles immediately.”
https://www.gnxp.com/WordPress/2007/10/17/the-samaritans-it-s-endogamy-not-cousin-marriage-per-se/

Bird brains are radically different from mammalian brains, but produce similar levels of intelligent thought. Bird brains might actually be superior since they are made of smaller, more densely-packed neurons, meaning a bird would be smarter than a mammal whose brain had the same volume. Hundreds of years from now, “humans” might have denser brains and smarter minds thanks to radical genetic engineering that takes inspiration from other organisms.
https://science.sciencemag.org/content/369/6511/1567

In 1991, Joe Biden predicted that “[By the year 2020] I’ll be dead and gone in all probability.”
Three months remain in this year so…
https://youtu.be/i4TuxvhoMs4

Using genetic engineering, scientists were able to transplant sperm from one male farm animal to a sterile male of the same species so that the recipient male produced the same sperm as the donor male. This could make it cheaper and easier to breed prized farm animals by using genetically inferior males as “surrogate fathers” for their offspring, and it could let us resurrect extinct species for which we have frozen sperm samples.
https://www.pnas.org/content/117/39/24195

World-renowned scientist Stephen Wolfram gave a wide-ranging, four-hour interview. I set this up to play at what seemed like a particularly interesting moment, but you should watch it from the beginning.
https://www.youtube.com/watch?v=-t1_ffaFXao&t=2862s

BP released a report containing predictions about the future global energy landscape. Even in their most conservative scenario, global oil consumption for transportation peaks by 2030.
https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-energy-outlook-2020.html

Progress is being made building the first, useful nuclear fusion reactor.
https://www.cambridge.org/core/blog/2020/09/29/scientists-present-a-comprehensive-physics-basis-for-a-new-fusion-reactor-design/

There is no known scientific barrier to creating a room-temperature superconductor. The superconductors that we already know of, which only operate at very low ambient temperatures, could work fine in deep space.
https://physics.stackexchange.com/questions/294313/are-room-temperature-superconductors-theoretically-possible-and-through-what-me

A recent experiment with an underwater server farm went well. Cooling costs were much lower because the capsule was immersed in cold seawater, and few of the servers failed because the atmospheric content in the capsule could be controlled better (a pure nitrogen atmosphere helped because oxygen corrodes computer circuits and cables). For this and other reasons, I think intelligent machines might live in the oceans.
https://www.bbc.com/news/technology-54146718

Many common, manmade objects could be made more durable and longer-lasting, for relatively small up-front cost. However, this is rarely done since it goes against the interests of manufacturers, who want consumers to buy replacement goods often. Planned obsolescence is real and pervasive. It’s disturbing to think about how big a share of global economic activity is people buying replacements things that shouldn’t have needed to be thrown out.
https://www.youtube.com/watch?v=zdh7_PA8GZU

The human backup driver was found criminally responsible for the infamous 2018 crash of a self-driving car that killed a homeless woman.
https://www.bbc.com/news/technology-54175359

‘“Inertial navigation was perhaps the pinnacle of mechanical engineering and among the most complicated objects ever manufactured”…But in the 1990s these were superseded by micro-electromechanical systems (MEMS)—chips with vibrating mechanical structures that detect angular motion. MEMS technology is cheap and ubiquitous (it is used in car airbags and toy drones). That makes it hard to restrict by way of military-export controls.’
https://www.economist.com/science-and-technology/2020/01/16/irans-attack-on-iraq-shows-how-precise-missiles-have-become

Here’s one of those old inertial navigation units, used to guide U.S. nuclear missiles.
https://www.thedrive.com/the-war-zone/30254/this-isnt-a-sci-fi-prop-its-a-doomsday-navigator-for-americas-biggest-cold-war-icbm

“Center Barrel Replacement Plus” is a maintenance practice in which an F/A-18 fighter plane has the middle section of its fuselage cut out and replaced with a new section. The aircraft’s wings and landing gear are attached to the “center barrel,” so the joints there wear out faster than any other part of the plane. One of the improvements incorporated in the more advanced F/A-18 Super Hornet is a modular fuselage. This allows maintenance crews to replace center barrels with greater speed and ease.
https://www.thedrive.com/the-war-zone/36435/the-plan-for-making-aging-marine-corps-hornets-deadlier-than-ever-for-a-final-decade-of-service
https://www.youtube.com/watch?v=Y5hax06xClQ

A electromagnetic aircraft launch catapult lets an aircraft carrier launch 12.5% more planes during combat than a carrier with an older steam-powered catapult.
https://nationalinterest.org/blog/buzz/emals-how-us-navy-aircraft-carriers-will-sail-future-and-dominate-169046

China’s third aircraft carrier will be larger and more advanced than its previous two, and might have an electromagnetic catapult.
https://nationalinterest.org/blog/buzz/why-chinas-third-aircraft-carrier-might-be-supercarrier-after-all-168986

And the worst “aircraft carriers” ever were the CAM Ships of WWII. The planes were violently catapulted/rocketed into the air, did their thing, and were then expected to crash land in the water next to a friendly ship, whereupon the pilot would be rescued.
https://en.wikipedia.org/w/index.php?title=CAM_ship&oldid=961354276

The U.S. Army has finally applied camouflage patterning to all the straps and belts on its infantry kits. Looks like all that’s left to do is to camouflage the Velcro patches. It’s not the biggest deal to have a big, solid green rectangle in the middle of your camouflaged shirt, but how hard would it be to fix it?
https://www.armytimes.com/news/your-army/2019/03/05/this-unit-will-be-the-first-to-get-the-armys-newest-helmet-body-armor-kit/

The Congressional Budget Office predicts the pandemic’s human and economic impact will be felt for decades. Declining birthrates and higher mortality will lead to the U.S. population being 11 million people smaller in 2050 than it otherwise would have been.
https://www.cbo.gov/publication/56598

Bad news: The U.S. just had its 200,000th COVID-19 death.
Worse news: That means the University of Washington disease model has proved itself highly accurate once again: On June 16, the Model predicted the U.S. would hit the 200,000 milestone by October 1. It now says we’ll hit the 300,000 mark by December 10, and if we’re unlucky/incompetent, we could surpass 400,000 by January 1.
https://covid19.healthdata.org/united-states-of-america?view=total-deaths&tab=trend
https://apnews.com/article/virus-outbreak-huntsville-alabama-us-news-public-health-a05360a9df7e19f9bee83f520deada1c

On June 11, Dr. Ashish Jha correctly predicted the U.S. would have its 200,000th death “sometime in September.” He now predicts a COVID-19 vaccine won’t be widely available to Americans until next spring (second link).
https://www.today.com/video/-we-will-cross-the-200-000-mark-in-coronavirus-deaths-by-september-doctor-says-84871749877
https://www.boston.com/news/coronavirus/2020/09/17/ashish-jha-trump-disputes-cdc-director-vaccine-timeline

“Creative” jobs won’t save human workers from machines or themselves

There’s a widely-held belief that, however advanced machines get, humans will always have a monopoly on work requiring creativity, artistry, and emotional interaction. After all, robots and computer programs are only capable of doing rote, mechanical tasks, and only “think” in very brittle ways that are fundamentally different from how our minds work. In fact, the prospect of automating all drudge work, and even high-level analytical work, is a desirable scenario to many people, as it would allow us to focus ourselves on those realms of thought and endeavor that are both uniquely human and the most deeply gratifying. Wouldn’t it be wonderful to have machines take care of your essential needs for free while you spent your days indulging in your passions and hobbies, honing your skills to that master level you’ve always known you were capable of if only you had the time to practice? Surely, unless we blow ourselves up, technology will ultimately make such a lifestyle possible, right? A glorious “end of history.” 

Well, I doubt it will happen, and if it happens, it won’t last. 

First, there’s no reason to assume machines won’t someday be more creative, artistic, and “emotional” (even if those emotions are just outwardly simulated and not inwardly experienced) than humans. If writing and performing a song that moves people to tears is ultimately just the product of specific patterns of human brain activity, then there’s no barrier to computers simulating the same process, and making the songs faster, cheaper and maybe better than the best humans can. And as profound and as idiosyncratically “human” as they may seem, our emotions are also the mere products of brain activity, meaning machines could simulate them, too. In fact, machines might be better-suited to jobs requiring an emotional touch than humans since they could be programmed to have the optimal personality profiles for the task. Imagine a therapist who was preternaturally calm, reassuring, and unable to take offense to anything you said.

Second, there’s the hard economic reality of supply and demand. If tomorrow machines liberated humans from drudge work, and the government provided everyone with free health care and a basic income, leaving us free to pursue our passions full-time without risk, finding ways to stand out would actually become harder. You would get the chance to finally focus on writing that book, open that indie coffee shop, or do artistic photography, but so would hundreds of millions of other people. The competition would be incredibly fierce, the market for whatever zany good or service you have a passion for selling would be glutted, and the same ultra-talented, sickeningly ambitious, status-seeking people who succeed today would rise to the top of the pack in the New World Order as well. And of course dumb luck would continue to be a major factor (e.g. – the highest-paid actors in Hollywood mostly aren’t the best actors in the world; they’re above-average actors who got lucky breaks or were leapfrogged to the top because they knew an important boss in the industry).

Social media’s limited headway in “leveling the playing field” by enabling anyone to distribute their creative content and reap success and fame is instructive. The rise of  video sharing platforms has gone a long way to decentralizing entertainment content creation and consumption and to weakening the traditional titans of media, but it hasn’t allowed every schmoe who tries to make a living off of YouTube ad revenues to succeed. The vast majority haven’t and won’t thanks to the implacable Law of Supply and Demand. The market for entertaining videos is oversaturated with Supply, Demand is much less flexible since there are only so many humans in the world with so much free time each day to watch videos, and as a result, among the firms providing Supply, the income/popularity spread conforms to the 100-year-old Pareto Distribution.

In a Pareto Distribution, the thing being measured is highly concentrated at one extreme.

The past 15 years have shown that, even as information technology has advanced, the fundamental forces that control how markets work have not. I see no reason why this should change in the future, which makes me deeply skeptical of the theory that technological unemployment won’t be a bad thing because it will free up humans to PROFITABLY pursue the arts or other creative endeavors. In such a scenario, the market for “artsy” or “creative” stuff would be glutted by the wave of people entering it, and there wouldn’t be enough wages to go around.

If you want to see direct evidence of this phenomenon, go to a local arts and crafts festival, think about how extraordinarily skilled some of the artisans are (even if just in some narrow realm, like making custom ceramic coffee mugs), and then think about how many of them seem like they’re rich, or even appear to be doing enough sales volume to produce minimum wage income. Now, imagine what it would be like if there were ten times as many people selling arts and crafts, meaning the competition was ten times as intense. Profit margins would only shrink.

To be clear, I think a post-scarcity future where machines did most of the work and where humans were free to do what they wanted would be better overall for most people than today’s capitalist rat-race world. However, I think people overestimate how satisfying and stable it would be. Many people would find it shattering if, after being finally unshackled from their rote jobs and allowed to delve full-time into their passions, they turned out to be not that good at it, and no one wanted to buy their artsy, custom-made coffee mugs or their books of poetry. Maybe it’s better for one’s ego to have an unrealized fantasy than to have a shot at it and fail. And even if you proved excellent in the field of work you were passionate about, the odds are you still wouldn’t be among the best, consigning you to a lifetime of middling success, and how would that be much different from an attainable life you could have today?

And of course, if machines gain the ability to do the creative/artsy/emotional stuff, it’s the coup de grace. Relatedly, the knowledge that a machine somewhere out there is always better than you, irrespective of what task you try to do or what personal attribute you have, will only undermine our sense of individual and collective competence and importance. 

A computer program called the “Creative Adversarial Network” (CAN) made these abstract paintings in 2017. Most humans guessed they were made by human artists. AIs will be more creative and artistic in the future than CAN.

I think the freedom to do what we want with all of our time will produce widespread boredom, aimlessness, and antisocial behavior to relieve those feelings. It’s no coincidence that the violent street protests the U.S. had this year happened when colleges were closed for the summer and many people were out of work thanks to the pandemic-triggered economic crash. Many of these people were unoccupied and had nothing better to do. (Interestingly, the U.S. also instituted a “temporary UBI” this year, so 2020 might have given us a glimpse into the future in more ways than one.) 

Additionally, if we were free to do what we wanted, a disturbingly large fraction of the population would reveal itself to have no productive passions or hobbies, and would instead indulge in full-time hedonistic behavior. These people would be fundamentally different from the artsy and creative types I mentioned earlier. However skilled or deluded they were, those guys were still producers who strove to make content and provide services. The future hedonists will be pure consumers.

To the list of hedonistic classics like drug abuse and reckless sports, we can add more sophisticated distractions that will exist thanks to the advanced technology that we’ll have by the time the post-scarcity UBI world arises, like unending sex with beautiful androids or living in virtual reality video games that seem totally real. I won’t deny that such a life would be fun most of the time, and that it would beat being a working stiff, but I also think it would be ultimately unsatisfying for most people.  

My big point is that even a post-scarcity UBI world where machines did the hard work wouldn’t be a utopia. In fact, I think it would fall farther short of it than its futurist acolytes realize. Thanks to our very nature–including our limits–humans can’t create a perfectly satisfying and happy world with any level of technology. Better technology and changes to the socioeconomic system could certainly make the world objectively better than it is now, just as we’re objectively better-off than we were in the Dark Ages, but conditions will never approach a state of perfection. Ultimately, pursuing higher levels of happiness and satisfaction will require us to radically re-engineer ourselves as a species, but that’s for another blog entry…

Links:

  1. “Creative Adversarial Networks” make paintings that look like those of professional human painters: https://www.artsy.net/article/artsy-editorial-hard-painting-made-computer-human
  2. “Utopia” is Greek for “no place” in acknowledgement of the fact that it can’t exist: http://www.bl.uk/learning/histcitizen/21cc/utopia/utopia.html

Interesting articles, August 2020

A Mexican drug cartel is trying to use bomb-rigged quadcopter drones to assassinate enemies.
https://www.thedrive.com/the-war-zone/36013/mexican-drug-cartel-now-assassinating-its-enemies-with-improvised-explosive-toting-drones

A massive, accidental explosion ripped through Beirut when a warehouse containing 2,700 tons of fertilizer caught fire. The explosion was equal to 200 – 300 tons of dynamite (0.2 – 0.3 kilotons) and killed at least 190 people.
https://graphics.reuters.com/LEBANON-SECURITY/BLAST/yzdpxnmqbpx/

The 75th anniversary of the atomic bombings of Japan occurred. Those early, crude nuclear bombs had yields of 12 kilotons and 20 kilotons, and collectively killed about 214,000 people.
https://www.bbc.com/news/in-pictures-53648572

In WWII, the British terrorized Germany with low-flying balloons. Long, strong cords were tied to their bottoms, and they would often entangle in power lines, shorting them out.
https://www.youtube.com/watch?v=ioshB6dhe-0

In the 1950s, the U.S. considered using high-altitude balloons to carry nuclear bombs to targets in the Soviet Union.
https://en.wikipedia.org/wiki/WS-124A_Flying_Cloud

Here’s a stunning visualization of the 57,000 new satellites that will be launched over the next nine years.
https://www.youtube.com/watch?v=oqiO2xeMkY0

The two astronauts who made history by launching into space on a commercial rocket have safely returned to Earth.
https://apnews.com/bf77af89c527340793d15a9957d30c84

Space-X had another successful launch of a new space rocket.
https://www.bbc.com/news/science-environment-53659702

The first photo of a stealth Blackhawk helicopter has been released.
https://www.thedrive.com/the-war-zone/35342/this-is-the-first-image-ever-of-a-stealthy-black-hawk-helicopter

Anyone familiar with the WWII European Theater will have heard about the feared “German 88mm,” which was the most effective antiaircraft and antitank shell of the War. It could punch through the armor of any Allied tank. I then remembered that postwar American tanks had 90mm cannons, which is only 2mm different from 88mm. It occurred to me: Did we copy the German 88mm cannon after seeing how effective it was in WWII? Kind of! When the War started, the U.S. was already using a 90mm cannon, but only as an antiaircraft weapon. The shell’s ballistics were almost the same as the German 88mm. Only after seeing how effective that type of weapon could be if mounted in a tank did we decide to start doing the same (we made this insight later than the Germans, so our 90mm tanks weren’t ready until 1945). After WWII ended, we realized that tank combat had changed forever, and that 90mm should be the new standard going forward.
https://en.wikipedia.org/wiki/8.8_cm_Flak_18/36/37/41
https://en.wikipedia.org/wiki/M48_Patton

If the Soviet T-34 tank was so great, why didn’t the Germans copy it?
https://www.youtube.com/watch?v=vczPA1xGJQI

The Soviet MD-160 is neither plane nor ship, and instead is a totally unique, massive fighting machine designed to skim low over the surface of the ocean. It had six large anti-ship missile launchers. It is now being turned into a tourist attraction.
https://www.dailymail.co.uk/news/article-8665541/Gigantic-1980s-Soviet-vehicle-MD-160-dwarfs-Boeing-747-lies-abandoned-Caspian-Sea.html

The MiG-35 is essentially a modernized version of the MiG-29. Though it sounds like a great fighter plane on paper, few sales have been made, and the new plane’s future is in doubt. Part of the problem is that a bigger, better Russian fighter–the Su-30–costs only 25% more money to buy and operate.
https://www.thedrive.com/the-war-zone/35500/why-russias-mig-35-is-starting-to-look-like-a-dead-duck

An AI just beat a human fighter pilot in a computer simulated dogfight between two F-16s. Both of the virtual planes were restricted to machine guns only. The AI, codenamed “Heron,” demonstrated superhuman accuracy with its weapon and was extremely agile flying its plane.
https://www.defenseone.com/technology/2020/08/ai-just-beat-human-f-16-pilot-dogfight-again/167872/

This U.S. Navy fighter pilot was impressed with the AI.
https://www.thedrive.com/the-war-zone/35947/navy-f-a-18-squadron-commanders-take-on-ai-repeatedly-beating-real-pilot-in-dogfight

These other two U.S. fighter pilots were not impressed.
https://taskandpurpose.com/military-tech/darpa-artificial-intelligence-dogfight-analysis

Ben Goertzel’s latest thoughts on AGI, including the failure of one of his key predictions for 2020, and the limitations of GPT-3.
https://www.nextbigfuture.com/2020/08/ben-goertzel-2020-interview-on-artificial-general-intelligence.html

Here’s another impressive demonstration of GPT-3’s capabilities, this time playing “19 Degrees of Kevin Bacon.”
https://twitter.com/danielbigham/status/1295864369713209351

The world’s uncoordinated and largely disappointing response to the COVID-19 pandemic portends badly for our ability to deal with a hostile AGI in the future.
https://www.lesswrong.com/posts/wTKjRFeSjKLDSWyww/possible-takeaways-from-the-coronavirus-pandemic-for-slow-ai

This random guy with a math degree from Harvard has built an economic model that seems to indicate the Singularity will happen in 2047.
https://www.openphilanthropy.org/blog/modeling-human-trajectory

A computer just solved a 90-year-old math theorem called the “Keller conjecture.”
https://www.quantamagazine.org/computer-search-settles-90-year-old-math-problem-20200819/

After it becomes impossible to shrink computer chip features any smaller, we’ll still be able to improve their cost-performance by optimizing software, hardware, and algorithms.
https://science.sciencemag.org/content/368/6495/eaam9744

‘How does the iPhone XS compare to the most powerful and expensive supercomputer from 30 years ago?’
https://medium.com/@diego./cray-2-v-iphone-xs-fight-6f05b494efe1

Painting one out of three blades black makes a windmill much more visible to birds, reducing the odds of deadly collisions.
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6592

Coal consumption in the U.K. has dropped to levels unseen since before the Industrial Revolution.
https://www.theguardian.com/environment/2020/aug/09/is-this-the-end-for-king-coal-in-britain

A new spy device can use sound to deduce what shape a key must have to open a specific door lock. A 3D metal printer can then use the data to make a duplicate key.
https://gizmodo.com/researchers-find-a-way-to-copy-keys-using-the-sounds-th-1844774401

Nothing like a long article that makes several predictions about the future, but essentially concludes with: “Or maybe none of what I just said will actually happen.”
https://www.theatlantic.com/ideas/archive/2020/08/just-small-shift-remote-work-could-change-everything/614980/

In 1891, Oscar Wilde envisioned a future utopia where machines did all the work humans didn’t want to, and the government provided all basic needs for free, freeing people to pursue their passions. Many “transhumanist” ideas are actually quite old.
https://www.marxists.org/reference/archive/wilde-oscar/soul-man/

The impossible has happened: a hurricane that the National Weather Service described as being “unsurvivable” actually had a 99.9999% survival rate.
https://www.huffpost.com/entry/hurricane-laura-storm-surge_n_5f47253ac5b64f17e1385320

Facial recognition technology is now being used to keep track of the nourishment and health of farm animals. I’ve predicted that more advanced versions of technologies like this will let us track entire populations of animals starting in the 2100s.
https://www.washingtonpost.com/world/asia_pacific/facial-recognition-china-animals-farms-agriculture/2020/08/23/9808c710-d6fb-11ea-b9b2-1ea733b97910_story.html

Over three years ago, computer tycoon John McAfee said that he would…do something obscene in public…if Bitcoin wasn’t worth $500,000 within three years. It’s only worth $11,700 today.
http://dickening.com

Samsung has unveiled an improved, folding smartphone. It has three screens.
https://www.bbc.com/news/technology-53664988

Elon Musk says that the “volumetric efficiency” of a typical car factory is in the “low single digit percentage,” and that the figure can be radically improved. It’s an interesting idea to ponder. Factories usually have very high ceilings, so reducing their height by 50% would presumably double their volumetric efficiency. How come no one thought of that before?
https://www.thestreet.com/tesla/news/elon-musk-talks-tsla-stock-tesla-manufacturing-efficiency

A new way to create magnets has been discovered.
https://advances.sciencemag.org/content/6/31/eabb7721

Mainstream political pundits accurately predicted that Joe Biden would pick Kamala Harris as his Vice President.
https://thehill.com/homenews/campaign/511131-biden-edges-closer-to-vp-pick-heres-whos-up-and-whos-down
https://www.cnn.com/2020/08/09/politics/joe-biden-vp-pick/index.html

A professor with an excellent track record of predicting U.S. Presidential elections says Biden will win this year. He was only wrong in 2000, when the election results were disputed, and the Supreme Court decided the matter, along partisan lines, in favor of George W. Bush. So, if we assume the professor’s model is right, that is Trump’s only route to reelection.
https://thehill.com/homenews/campaign/510754-professor-with-history-of-correctly-predicting-elections-forecasts-that

Elon Musk unveiled his “Neuralink” brain implants. Most experts weren’t impressed.
https://www.bbc.com/news/technology-53987919

DNA analyses of mummies show that ancient Egyptians were more similar to Europeans than today’s Egyptians are. The latter have more ancestry from sub-Saharan Africa.
https://www.nature.com/articles/ncomms15694#Sec2

Another anti-aging drug has failed during clinical trials.
https://blogs.sciencemag.org/pipeline/archives/2020/08/17/unity-biotechnology-and-senescent-cell-therapy

Lung cancer death rates in the U.S. have significantly dropped over the last 20 years thanks to better treatments.
https://www.cancer.gov/news-events/press-releases/2020/lung-cancer-treatments-mortality-drop

Great news: a successful vaccination drive in Nigeria has eradicated polio from the African continent. The disease now only remains in Afghanistan and Pakistan.
https://www.bbc.com/news/world-africa-53887947

More evidence that COVID-19 poses virtually no health risk to children.
https://www.bbc.com/news/health-53932294

The FDA has approved convalescent plasma as a treatment for COVID-19. Though the Trump administration trumpeted it as a “historic breakthrough,” it is likely to be expensive and minimally effective.
https://blogs.sciencemag.org/pipeline/archives/2020/08/24/convalescent-plasma-the-science-and-the-politics

The first case of a person being re-infected with COVID-19 has been confirmed, which means immunity isn’t permanent, at least for some people. For what it’s worth, the man’s second infection was much milder than the first one.
https://www.japantimes.co.jp/news/2020/08/24/asia-pacific/science-health-asia-pacific/hong-kong-first-coronavirus-reinfection/

This prediction from three months ago turned out wrong. Italy has averaged only about 10 COVID-19 deaths per day over the last month, and a second wave hasn’t started there.
https://www.thesun.co.uk/news/11552856/italy-second-wave-coronavirus-lockdown-eased/

President Trump listens as coronavirus response coordinator Deborah Birx speaks during a briefing at the White House.

Remember this White House briefing from March 31? The graph behind the podium showed that, with a lockdown, 100,000 – 240,000 Americans would still die of COVID-19. The X-axis was unlabeled, but since the figures in the graphs are shaped like humps, we can conclude that it pertained to the time period corresponding to the virus’ first wave. So in other words, on March 31, the White House said that the first wave of the pandemic would kill 100,000 – 240,000 Americans. The first wave has not ended, and as of today, the U.S. death toll is at least 180,000. Projections from other reliable sources I’ve found indicate that the second wave will start around mid-September, as the weather cools, and that the death toll at that point will be almost 200,000. So the first wave of the virus will end up killing a number of Americans that is nearer the high end of the March 31 projection.
https://www.npr.org/2020/03/31/823916343/coronavirus-task-force-set-to-detail-the-data-that-led-to-extension-of-guideline

How Ray Kurzweil’s 2019 predictions are faring (pt 1)

In 1999, Ray Kurzweil, one of the world’s greatest futurists, published a book called The Age of Spiritual Machines. In it, he made the case that artificial intelligence, nanomachines, virtual reality, brain implants, and other technologies would greatly improve during the 21st century, radically altering the world and the human experience. In the final four chapters, titled “2009,” “2019,” “2029,” and “2099,” he made detailed predictions about what the state of key technologies would be in each of those years, and how they would impact everyday life, politics and culture.

Ray Kurzweil receiving a technology award from President Clinton in 1999.

Towards the end of 2009, a number of news columnists, bloggers and even Kurzweil himself weighed in on how accurate his predictions from the eponymous chapter turned out. By contrast, no such analysis was done over the past year regarding his 2019 predictions. As such, I’m taking it upon myself to do it.

I started analyzing the accuracy of Kurzweil’s predictions in late 2019 and wanted to publish my full results before the end of that year. However, the task required me to do much more research that I had expected, so I missed that deadline. Really digging into the text of The Age of Spiritual Machines and parsing each sentence made it clear that the number and complexity of the 2019 predictions were greater than a casual reading would suggest. Once I realized how big of a task it would be, I became kind of demoralized and switched to working on easier projects for this blog.

With the end of 2020 on the horizon, I think time is running out to finish this, and I’ve decided to tackle the problem by breaking it into smaller, manageable chunks: My analysis of Kurzweil’s 2019 predictions from The Age of Spiritual Machines will be spread out over three blog entries, the first of which you’re now reading. Except where noted, I will only use sources published before January 1, 2020 to support my conclusions.

“Computers are now largely invisible. They are embedded everywhere–in walls, tables, chairs, desks, clothing, jewelry, and bodies.”

RIGHT

A computer is a device that stores and processes data, and executes its programming. Any machine that meets those criteria counts as a computer, regardless of how fast or how powerful it is (also, it doesn’t even need to run on electricity). This means something as simple as a pocket calculator, programmable thermostat, or a Casio digital watch counts as a computer. These kinds of items were ubiquitous in developed countries in 1998 when Ray Kurzweil wrote the book, so his “futuristic” prediction for 2019 could have just as easily applied to the reality of 1998. This is an excellent example of Kurzweil making a prediction that leaves a certain impression on the casual reader (“Kurzweil says computers will be inside EVERY object in 2019!”) that is unsupported by a careful reading of the prediction.

“People routinely use three-dimensional displays built into their glasses or contact lenses. These ‘direct eye’ displays create highly realistic, virtual visual environments overlaying the ‘real’ environment.”

MOSTLY WRONG

The first attempt to introduce augmented reality glasses in the form of Google Glass was probably the most notorious consumer tech failure of the 2010s. To be fair, I think this was because the technology wasn’t ready yet (e.g. – small visual display, low-res images, short battery life, high price), and not because the device concept is fundamentally unsound. The technological hangups that killed Google Glass will of course vanish in the future thanks to factors like Moore’s Law. Newer AR glasses, like Microsoft’s Hololens, are already superior to Google Glass, and given the pace of improvement, I think AR glasses will be ready for another shot at widespread commercialization by the end of the 2020s, but they will not replace smartphones for a variety of reasons (such as the unwillingness of many people to wear glasses, widespread discomfort with the possibility that anyone wearing AR glasses might be filming the people around them, and durability and battery life advantages of smartphones).

Kurzweil’s prediction that contact lenses would have augmented reality capabilities completely failed. A handful of prototypes were made, but never left the lab, and there’s no indication that any tech company is on the cusp of commercializing them. I doubt it will happen until the 2030s.

Pokemon Go is an augmented reality video game, and has been downloaded over 1 billion times.

However, people DO routinely access augmented reality, but through their smartphones and not through eyewear. Pokemon Go was a worldwide hit among video gamers in 2016, and is an augmented reality game where the player uses his smartphone screen to see virtual monsters overlaid across live footage of the real world. Apps that let people change their appearances during live video calls (often called “face filters”), such as by making themselves appear to have cartoon rabbit ears, are also very popular among young people.

So while Kurzweil got augmented reality technology’s form factor wrong, and overestimated how quickly AR eyewear would improve, he was right that ordinary people would routinely use augmented reality.

The augmented reality glasses will also let you experience virtual reality.

WRONG

Augmented reality glasses and virtual reality goggles remain two separate device categories. I think we will someday see eyewear that merges both functions, but it will take decades to invent glasses that are thin and light enough to be worn all day, untethered, but that also have enough processing power and battery life to provide a respectable virtual reality experience. The best we can hope for by the end of the 2020s will be augmented reality glasses that are good enough to achieve ~10% of the market penetration of smartphones, and virtual reality goggles that have shrunk to the size of ski goggles.

Of note is that Kurzweil’s general sentiment that VR would be widespread by 2019 is close to being right. VR gaming made a resurgence in the 2010s thanks to better technology, and looks poised to go mainstream in the 2020s.

The augmented reality / virtual reality glasses will work by projecting images onto the retinas of the people wearing them.

PARTLY RIGHT

The most popular AR glasses of the 2010s, Google Glass, worked by projecting images onto their wearer’s retinas. The more advanced AR glass models that existed at the end of the decade used a mix of methods to display images, none of which has established dominance.

“Magic Leap One”

The “Magic Leap One” AR glasses use the retinal projection technology Kurzweil favored. They are superior to Google Glass since images are displayed to both eyes (Glass only had a projector for the right eye), in higher resolution, and covering a larger fraction of the wearer’s field of view (FOV). Magic Leap One also has advanced sensors that let it map its physical surroundings and movements of its wearer, letting it display images of virtual objects that seem to stay fixed at specific points in space (Kurzweil called this feature “Virtual-reality overlay display”).

Microsoft “Hololens”

Microsoft’s “Hololens” uses a different technology to produce images: the lenses are in fact transparent LCD screens. They display images just like a TV screen or computer monitor would. However, unlike those devices, the Hololens’ LCDs are clear, allowing the wearer to also see the real world in front of them.

The “Vuzix Blade”

The “Vuzix Blade” AR glasses have a small projector that beams images onto the lens in front of the viewer’s right eye. Nothing is directly beamed onto his retina.

It must emphasized again that, at the end of 2019, none of these or any other AR glasses were in widespread or common use, even in rich countries. They were confined to small numbers of hobbyists, technophiles, and software developers. A Magic Leap One headset cost $2,300 – $3,300 depending on options, and a Hololens was $3,000.

A man wearing HTC Vive virtual reality goggles, with hand controllers.

And as stated, AR glasses and VR goggles remained two different categories of consumer devices in 2019, with very little crossover in capabilities and uses. The top-selling VR goggles were the Oculus Rift and the HTC Vive. Both devices use tiny OLED screens positioned a few inches in front of the wearer’s eyes to display images, and as a result, are much bulkier than any of the aforementioned AR glasses. In 2019, a new Oculus Rift system cost $400 – $500, and a new HTC Vive was $500 – $800.

“[There] are auditory ‘lenses,’ which place high resolution-sounds in precise locations in a three-dimensional environment. These can be built into eyeglasses, worn as body jewelry, or implanted in the ear canal.”

MOSTLY RIGHT

Humans have the natural ability to tell where sounds are coming from in 3D space because we have “binaural hearing”: our brains can calculate the spatial origin of the sound by analyzing the time delay between that sound reaching each of our ears, as well as the difference in volume. For example, if someone standing to your left is speaking, then the sounds of their words will reach your left ear a split second sooner than they reach your right ear, and their voice will also sound louder in your left ear.

By carefully controlling the timing and loudness of sounds that a person hears through their headphones or through a single speaker in front of them, we can take advantage of the binaural hearing process to trick people into thinking that a recording of a voice or some other sound is coming from a certain direction even though nothing is there. Devices that do this are said to be capable of “binaural audio” or “3D audio.” Kurzweil’s invented term “audio lenses” means the same thing.

The Bose Frames sunglasses have small sound speakers built into them, close to the wearer’s ears.

Yes, there are eyeglasses with built-in speakers that play binaural audio. The Bose Frames “smart sunglasses” is the best example. Even though the devices are not common, they are commercially available, priced low enough for most people to afford them ($200), and have gotten good user reviews. Kurzweil gets this one right, and not by an eyerolling technicality as would be the case if only a handful of million-dollar prototype devices existed in a tech lab and barely worked.

The Apple Airpod wireless earbuds are, like most Apple products, status objects like jewelry.

Wireless earbuds are much more popular, and upper-end devices like the SoundPEATS Truengine 2 have impressive binaural audio capabilities. It’s a stretch, but you could argue that branding, and sleek, aesthetically pleasing design qualifies some higher-end wireless earbud models as “jewelry.”

Sound bars have also improved and have respectable binaural surround sound capabilities, though they’re still inferior to traditional TV entertainment system setups where the sound speakers are placed at different points in the room. Sound bars are examples of single-point devices that can trick people into thinking sounds are originating from different points in space, and in spirit, I think they are a type of technology Kurzweil would cite as proof that his prediction was right.

The last part of Kurzweil’s prediction is wrong, since audio implants into the inner ears are still found only in people with hearing problems, which is the same as it was in 1998. More generally, people have shown themselves more reluctant to surgically implant technology in their bodies than Kurzweil seems to have predicted, but they’re happy to externally wear it or to carry it in a pocket.

“Keyboards are rare, although they still exist. Most interaction with computing is through gestures using hands, fingers, and facial expressions and through two-way natural-language spoken communication. “

MOSTLY WRONG

Rumors of the keyboard’s demise have been greatly exaggerated. Consider that, in 2018, people across the world bought 259 million new desktop computers, laptops, and “ultramobile” devices (higher-end tablets that have large, detachable keyboards [the Microsoft Surface dominates this category]). These machines are meant to be accessed with traditional keyboard and mouse inputs.

Gartner’s estimates of global personal computer (PC) sales in 2018. The numbers for 2019 will be nearly the same.

The research I’ve done suggests that the typical desktop, laptop, and ultramobile computer has a lifespan of four years. If we accept this, and also assume that the worldwide computer sales figures for 2015, 2016, and 2017 were the same as 2018’s, then it means there are 1.036 billion fully functional desktops, laptops, and ultramobile computers on the planet (about one for every seven people). By extension, that means there are at least 1.036 billion keyboards. No one could reasonably say that Kurzweil’s prediction that keyboards would be “rare” by 2019 is correct.

The second sentence in Kurzweil’s prediction is harder to analyze since the meaning of “interaction with computing” is vague and hence subjective. As I wrote before, a Casio digital watch counts as a computer, so if it’s nighttime and I press one of its buttons to illuminate the display so I can see the time, does that count as an “interaction with computing”? Maybe.

If I swipe my thumb across my smartphone’s screen to unlock the device, does that count as an “interaction with computing” accomplished via a finger gesture? It could be argued so. If I then use my index finger to touch the Facebook icon on my smartphone screen to open the app, and then use a flicking motion of my thumb to scroll down over my News Feed, does that count as two discrete operations in which I used finger gestures to interact with computing?

You see where this is going…

Being able to set the bar that low makes it possible that this part of Kurzweil’s prediction is right, as unsatisfying as that conclusion may be.

Virtual reality game setups, like those offered by Oculus, commonly make use of hand controllers like these, which monitor the locations and movements of the player’s hands and translate them into in-game commands. This is an example of gestural control. Several million people now have advanced VR game systems like this.

Virtual reality gaming makes use of hand-held and hand-worn controllers that monitor the player’s hand positions and finger movements so he can grasp and use objects in the virtual environment, like weapons and steering wheels. Such actions count as interactions with computing. The technology will only get more refined, and I can see them replacing older types of handheld game controllers.

Hand gestures, along with speech, are also the natural means to interface with augmented reality glasses since the devices have tiny surfaces available for physical contact, meaning you can’t fit a keyboard on a sunglass frame. Future AR glasses will have front-facing cameras that watch the wearer’s hands and fingers, allowing them to interact with virtual objects like buttons and computer menus floating in midair, and to issue direct commands to the glasses through specific hand motions. Thus, as AR glasses get more popular in the 2020s, so will the prevalence of this mode of interface with computers.

Users interface with the “Gen 2” Amazon Echo through two-way spoken communication. The device is popular and highly reviewed and only costs $100, putting it within reach of hundreds of millions of households.

“Two-way natural-language spoken communication” is now a common and reliable means of interacting with computers, as anyone with a smart speaker like an Amazon Echo can attest. In fact, virtual assistants like Alexa, Siri, and Cortana can be accessed via any modern smartphone, putting this within reach of billions of people.

The last part of Kurzweil’s prediction, that people would be using “facial expressions” to communicate with their personal devices, is wrong. For what it’s worth, machines are gaining the ability to read human emotions through our facial expressions (including “microexpressions”) and speech. This area of research, called “affective computing,” is still stuck in the lab, but it will doubtless improve and find future commercial applications. Someday, you will be able to convey important information to machines through your facial expressions, tone of voice, and word choice just as you do to other humans now, enlarging your mode of interacting with “computing” to encompass those domains.

“Significant attention is paid to the personality of computer-based personal assistants, with many choices available. Users can model the personality of their intelligent assistants on actual persons, including themselves…”

WRONG

The most widely used computer-based personal assistants–Alexa, Siri, and Cortana–don’t have “personalities” or simulated emotions. They always speak in neutral or slightly upbeat tones. Users can customize some aspects of their speech and responses (i.e. – talking speed, gender, regional accent, language), and Alexa has limited “skill personalization” abilities that allow it to tailor some of its responses to the known preferences of the user interacting with it, but this is too primitive to count as a “personality adjustment” feature.

My research didn’t find any commercially available AI personal assistant that has something resembling a “human personality,” or that is capable of changing that personality. However, given current trends in AI research and natural language understanding, and growing consumer pressure on Silicon Valley’s to make products that better cater to the needs of nonwhite people, it is likely this will change by the end of this decade.

“Typically, people do not own just one specific ‘personal computer’…”

RIGHT

A 2019 Pew survey showed that 75% of American adults owned at least one desktop or laptop PC. Additionally, 81% of them owned a smartphone and 52% had tablets, and both types of devices have all the key attributes of personal computers (advanced data storing and processing capabilities, audiovisual outputs, accepts user inputs and commands).

The data from that and other late-2010s surveys strongly suggest that most of the Americans who don’t own personal computers are people over age 65, and that the 25% of Americans who don’t own traditional PCs are very likely to be part of the 19% that also lack smartphones, and also part of the 48% without tablets. The statistical evidence plus consistent anecdotal observations of mine lead me to conclude that the “typical person” in the U.S. owned at least two personal computers in late 2019, and that it was atypical to own fewer than that.

“Computing and extremely high-bandwidth communication are embedded everywhere.”

MOSTLY RIGHT

This is another prediction whose wording must be carefully parsed. What does it mean for computing and telecommunications to be “embedded” in an object or location? What counts as “extremely high-bandwidth”? Did Kurzweil mean “everywhere” in the literal sense, including the bottom of the Marianas Trench?

First, thinking about my example, it’s clear that “everywhere” was not meant to be taken literally. The term was a shorthand for “at almost all places that people typically visit” or “inside of enough common objects that the average person is almost always near one.”

Second, as discussed in my analysis of Kurzweil’s first 2019 prediction, a machine that is capable of doing “computing” is of course called a “computer,” and they are much more ubiquitous than most people realize. Pocket calculators, programmable thermostats, and even a Casio digital watch count computers. Even 30-year-old cars have computers inside of them. So yes, “computing” is “embedded ‘everywhere'” because computers are inside of many manmade objects we have in our homes and workplaces, and that we encounter in public spaces.

Of course, scoring that part of Kurzweil’s prediction as being correct leaves us feeling hollow since those devices don’t the full range of useful things we associate with “computing.” However, as I noted in the previous prediction, 81% of American adults own smartphones, they keep them in their pockets or near their bodies most of the time, and smartphones have all the capabilities of general-purpose PCs. Smartphones are not “embedded” in our bodies or inside of other objects, but given their ubiquity, they might as well be. Kurzweil was right in spirit.

Third, the Wifi and mobile phone networks we use in 2019 are vastly faster at data transmission than the modems that were in use in 1999, when The Age of Spiritual Machines was published. At that time, the commonest way to access the internet was through a 33.6k dial-up modem, which could upload and download data at a maximum speed of 33,600 bits per second (bps), though upload speeds never got as close to that limit as download speeds. 56k modems had been introduced in 1998, but they were still expensive and less common, as were broadband alternatives like cable TV internet.

In 2019, standard internet service packages in the U.S. typically offered WiFi download speeds of 30,000,000 – 70,000,000 bps (my home WiFi speed is 30-40 Mbps, and I don’t have an expensive service plan). Mean U.S. mobile phone internet speeds were 33,880,000 bps for downloads and 9,750,000 bps for uploads. That’s a 1,000 to 2,000-fold speed increase over 1999, and is all the more remarkable since today’s devices can traffic that much data without having to be physically plugged in to anything, whereas the PCs of 1999 had to be plugged into modems. And thanks to wireless nature of internet data transmissions, “high-bandwidth communication” is available in all but the remotest places in 2019, whereas it was only accessible at fixed-place computer terminals in 1999.

Again, Kurzweil’s use of the term “embedded” is troublesome, since it’s unclear how “high-bandwidth communication” could be embedded in anything. It emanates from and is received by things, and it is accessible in specific places, but it can’t be “embedded.” Given this and the other considerations, I think every part of Kurzweil’s prediction was correct in spirit, but that he was careless with how he worded it, and that it would have been better written as: “Computing and extremely high-bandwidth communication are available and accessible almost everywhere.”

Cables have largely disappeared.”

MOSTLY RIGHT

Assessing the prediction requires us to deduce which kinds of “cables” Kurzweil was talking about. To my knowledge, he has never been an exponent of wireless power transfer and has never forecast that technology becoming dominant, so it’s safe to say his prediction didn’t pertain to electric cables. Indeed, larger computers like desktop PCs and servers still need to be physically plugged into electrical outlets all the time, and smaller computing devices like smartphones and tablets need to be physically plugged in to routinely recharge their batteries.

That leaves internet cables and data/power cables for peripheral devices like keyboards, mice, joysticks, and printers. On the first count, Kurzweil was clearly right. In 1999, WiFi was a new invention that almost no one had access to, and logging into the internet always meant sitting down at a computer that had some type of data plug connecting it to a wall outlet. Cell phones weren’t able to connect to and exchange data with the internet, except maybe for very limited kinds of data transfers, and it was a pain to use the devices for that. Today, most people access the internet wirelessly.

Wireless keyboards and mice are affordable, but still significantly more expensive than their wired counterparts.

On the second count, Kurzweil’s prediction is only partly right. Wireless keyboards and mice are widespread, affordable, and are mature technologies, and even lower-cost printers meant for people to use at home usually come with integrated wireless networking capabilities, allowing people in the house to remotely send document files to the devices to be printed. However, wireless keyboards and mice don’t seem about to displace their wired predecessors, nor would it even be fair to say that the older devices are obsolete. Wired keyboards and mice are cheaper (they are still included in the box whenever you buy a new PC), easier to use since users don’t have to change their batteries, and far less vulnerable to hacking. Also, though they’re “lower tech,” wired keyboards and mice impose no handicaps on users when they are part of a traditional desktop PC setup. Wireless keyboards and mice are only helpful when the user is trying to control a display that is relatively far from them, as would be the case if the person were using their living room television as a computer monitor, or if a group of office workers were viewing content on a large screen in a conference room, and one of them was needed to control it or make complex inputs.

No one has found this subject interesting enough to compile statistics on the percentages of computer users who own wired vs. wireless keyboards and mice, but my own observation is that the older devices are still dominant.

And though average computer printers in 2019 have WiFi capabilities, the small “complexity bar” to setting up and using the WiFi capability makes me suspect that most people are still using a computer that is physically plugged into their printer to control the latter. These data cables could disappear if we wanted them to, but I don’t think they have.

This means that Kurzweil’s prediction that cables for peripheral computer devices would have “largely disappeared” by the end of 2019 was wrong. For what it’s worth, the part that he got right vastly outweighs the part he got wrong: The rise of wireless internet access has revolutionized the world by giving ordinary people access to information, services and communication at all but the remotest places. Unshackling people from computer terminals and letting them access the internet from almost anywhere has been extremely empowering, and has spawned wholly new business models and types of games. On the other hand, the world’s failure to fully or even mostly dispense with wired computer peripheral devices has been almost inconsequential. I’m typing this on a wired keyboard and don’t see any way that a more advanced, wireless keyboard would help me.

“The computational capacity of a $4,000 computing device (in 1999 dollars) is approximately equal to the computational capability of the human brain (20 million billion calculations per second).” [Or 20 petaflops]

WRONG

Graphics cards provide the most calculations per second at the lowest cost of any type of computer processor. The NVIDIA GeForce RTX 2080 Ti Graphics Card is one of the fastest computers available to ordinary people in 2019. In “overclocked” mode, where it is operating as fast as possible, it does 16,487 billion calculations per second (called “flops”).

A GeForce RTX 2080 retails for $1,100 and up, but let’s be a little generous to Kurzweil and assume we’re able to get them for $1,000.

$4,000 in 1999 dollars equals $6,164 in 2019 dollars. That means today, we can buy 6.164 GeForce RTX 2080 graphics cards for the amount of money Kurzweil specified.

6.164 cards x 16,487 billion calculations per second per card = 101,625 billion calculations per second for the whole rig.

This computational cost-performance level is two orders of magnitude worse than Kurzweil predicted.

The SuperMUC-NG supercomputer fills a large room and is as powerful as one human brain.

Additionally, according to Top500.org, a website that keeps a running list of the world’s best supercomputers and their performance levels, the “Leibniz Rechenzentrum SuperMUC-NG” is the ninth fastest computer in the world and the fastest in Germany, and straddles Kurzweil’s line since it runs at 19.4 petaflops or 26.8 petaflops depending on method of measurement (“Rmax” or “Rpeak”). A press release said: “The total cost of the project sums up to 96 Million Euro [about $105 million] for 6 years including electricity, maintenance and personnel.” That’s about four orders of magnitude worse than Kurzweil predicted.

I guess the good news is that at least we finally do have computers that have the same (or slightly more) processing power as a single, average, human brain, even if the computers cost tens of millions of dollars apiece.

“Of the total computing capacity of the human species (that is, all human brains), combined with the computing technology the species has created, more than 10 percent is nonhuman.”

WRONG

Kurzweil explains his calculations in the “Notes” section in the back of the book. He first multiplies the computation performed by one human brain by the estimated number of humans who will be alive in 2019 to get the “total computing capacity of the human species.” Confusingly, his math assumes one human brain does 10 petaflops, whereas in his preceding prediction he estimates it is 20 petaflops. He also assumed 10 billion people would be alive in 2019, but the figure fell mercifully short and was ONLY 7.7 billion by the end of the year.

Plugging in the correct figure, we get (7.7 x 109 humans) x 1016 flops = 7.7 x 1025 flops = the actual total computing capacity of all human brains in 2019.

Determining the total computing capacity of all computers in existence in 2019 can only really be guessed at. Kurzweil estimated that at least 1 billion machines would exist in 2019, and he was right. Gartner estimated that 261 million PCs (which includes desktop PCs, notebook computers [seems to include laptops], and “ultramobile premiums”) were sold globally in 2019. The figures for the preceding three years were 260 million (2018), 263 million (2017), and 270 million (2016). Assuming that a newly purchased personal computer survives for four years before being fatally damaged or thrown out, we can estimate that there were 1.05 billion of the machines in the world at the end of 2019.

However, Kurzweil also assumed that the average computer in 2019 would be as powerful as a human brain, and thus capable of 10 petaflops, but reality fell far short of the mark. As I revealed in my analysis of the preceding prediction, a 10 petaflop computer setup would cost somewhere between $606,543 in GeForce RTX 2080 graphics cards, or $52.5 million for half a Leibniz Rechenzentrum SuperMUC-NG supercomputer. None of the people who own the 1.34 billion personal computers in the world spent anywhere near that much money, and their machines are far less powerful than human brains.

Let’s generously assume that all of the world’s 1.05 billion PCs are higher-end (for 2019) desktop computers that cost $900 – $1,200. Everyone’s machine has an Intel Core i7, 8th Generation processor, which offers speeds of a measly 361.3 gigaflops (3.613 x 1011 flops). A 10 petaflop human brain is 27,678 times faster!

Plugging in the computer figures, we get (1.05 x 109 personal computers) x 3.61311 flops = 3.794 x 1020 = the total computing capacity of all personal computers in 2019. That’s five orders of magnitude short. The reality of 2019 computing definitely fell wide of Kurzweil’s expectations.

What if we add the computing power of all the world’s smartphones to the picture? Approximately 3.2 billion people owned a smartphone in 2019. Let’s assume all the devices are higher-end (for 2019) iPhone XR’s, which everyone bought new for at least $500. The iPhone XR’s have A12 Bionic processors, and my research indicates they are capable of 700 – 1,000 gigaflop maximum speeds. Let’s take the higher-end estimate and do the math.

3.2 billion smartphones x 1012 flops = 3.2 x 1021 = the the total computing capacity of all smartphones in 2019.

Adding things up, pretty much all of the world’s personal computing devices (desktops, laptops, smartphones, netbooks) only produce 3.5794 x 1021 flops of computation. That’s still four orders of magnitude short of what Kurzweil predicted. Even if we assume that my calculations were too conservative, and we add in commercial computers (e.g. – servers, supercomputers), and find that the real amount of artificial computation is ten times higher than I thought, at 3.5794 x 1022 flops, this would still only be equivalent to 1/2000th, or 0.05% of the total computing capacity of all human brains (7.7 x 1025 flops). Thus, Kurzweil’s prediction that it would be 10% by 2019 was very wrong.

“Rotating memories and other electromechanical computing devices have been fully replaced with electronic devices.”

WRONG

For those who don’t know much about computers, the prediction says that rotating disk hard drives will be replaced with solid-state hard drives that don’t rotate. A thumbdrive has a solid-state hard drive, as do all smartphones and tablet computers.

I gauged the accuracy of this prediction through a highly sophisticated and ingenious method: I went to the nearest Wal-Mart and looked at the computers they had for sale. Two of the mid-priced desktop PCs had rotating disk hard drives, and they also had DVD disc drives, which was surprising, and which probably makes the “other electromechanical computing devices” part of the prediction false.

The HP Pavilion 590-p0033w has a rotating hard disk drive, indicated by the “7200 RPM” (revolutions per minute) speed figure on the front of this box. It also says it has a “DVD-Writer.” This is a newly manufactured machine, and at $499, is a mid-ranged desktop.
The HP Slim Desktop 290-p0043w also has a rotating hard disk drive, with a 7200 RPM speed.
And before anyone says “Well, only the clunky, old-fashioned desktops still have rotating disk drives!” check out this low-end (but newly manufactured) laptop I also found at Wal-Mart. The HP 15-bs212wm has a rotating hard disk drive and a DVD drive.

If the world’s biggest brick-and-mortar retailer is still selling brand new computers with rotating hard disk drives and rotating DVD disc drives, then it can’t be said that solid state memory storage has “fully replaced” the older technology.

“Three-dimensional nanotube lattices are now a prevalent form of computing circuitry.”

MOSTLY WRONG

Many solid-state computer memory chips, such as common thumbdrives and MicroSD cards, have 3D circuitry, and it is accurate to call them “prevalent.” However, 3D circuitry has not found routine use in computer processors thanks to unsolved problems with high manufacturing costs, unacceptably high defect rates, and overheating.

An internal diagram of a common MicroSD card, which has the simple job of storing data. It has about 18 layers. Memory storage chips are less sensitive to manufacturing defects since they have redundancy.
An exploded diagram of Intel’s upcoming “Lakefield” processor, which has the complex job of storing and processing data. It has four layers, and is much more technically challenging to make than a 3D memory chip.

In late 2018, Intel claimed it had overcome those problems thanks to a proprietary chip manufacturing process, and that it would start selling the resulting “Lakefield” line of processors soon. These processors have four, vertically stacked layers, so they meet the requirement for being “3D.” Intel hasn’t sold any yet, and it remains to be seen whether they will be commercially successful.

Silicon is still the dominant computer chip substrate, and carbon-based nanotubes haven’t been incorporated into chips because Intel and AMD couldn’t figure out how to cheaply and reliably fashion them into chip features. Nanotube computers are still experimental devices confined to labs, and they are grossly inferior to traditional silicon-based computers when it comes to doing useful tasks. Nanotube computer chips that are also 3D will not be practical anytime soon.

It’s clear that, in 1999, Kurzweil simply overestimated how much computer hardware would improve over the next 20 years.

“The majority of ‘computes’ of computers are now devoted to massively parallel neural nets and genetic algorithms.”

UNCLEAR

Assessing this prediction is hard because it’s unclear what the term “computes” means. It is probably shorthand for “compute cycles,” which is a term that describes the sequence of steps to fetch a CPU instruction, decode it, access any operands, perform the operation, and write back any result. It is a process that is more complex than doing a calculation, but that is still very basic. (I imagine that computer scientists are the only people who know, offhand, what “compute cycle” means.)

Assuming “computes” means “compute cycles,” I have no idea how to quantify the number of compute cycles that happened, worldwide, in 2019. It’s an even bigger mystery to me how to determine which of those compute cycles were “devoted to massively parallel neural nets and genetic algorithms.” Kurzweil doesn’t describe a methodology that I can copy.

Also, what counts as a “massively parallel neural net”? How many processor cores does a neutral net need to have to be “massively parallel”? What are some examples of non-massively parallel neural nets? Again, an ambiguity with the wording of the prediction frustrates an analysis. I’d love to see Kurzweil assess the accuracy of this prediction himself and to explain his answer.

“Significant progress has been made in the scanning-based reverse engineering of the human brain. It is now fully recognized that the brain comprises many specialized regions, each with its own topology and architecture of interneuronal connections. The massively parallel algorithms are beginning to be understood, and these results have been applied to the design of machine-based neural nets.”

PARTLY RIGHT

The use of the ambiguous adjective “significant” gives Kurzweil an escape hatch for the first part of this prediction. Since 1999, brain scanning technology has improved, and the body of scientific literature about how brain activity correlates with brain function has grown. Additionally, much has been learned by studying the brain at a macro-level rather than at a cellular level. For example, in a 2019 experiment, scientists were able to accurately reconstruct the words a person was speaking by analyzing data from the person’s brain implant, which was positioned over their auditory cortex. Earlier experiments showed that brain-computer-interface “hats” could do the same, albeit with less accuracy. It’s fair to say that these and other brain-scanning studies represent “significant progress” in understanding how parts of the human brain work, and that the machines were gathering data at the level of “brain regions” rather than at the finer level of individual brain cells.

Yet in spite of many tantalizing experimental results like those, an understanding of how the brain produces cognition has remained frustratingly elusive, and we have not extracted any new algorithms for intelligence from the human brain in the last 20 years that we’ve been able to incorporate into software to make machines smarter. The recent advances in deep learning and neural network computers–exemplified by machines like AlphaZero–use algorithms invented in the 1980s or earlier, just running on much faster computer hardware (specifically, on graphics processing units originally developed for video games).

If anything, since 1999, researchers who studied the human brain to gain insights that would let them build artificial intelligences have come to realize how much more complicated the brain was than they first suspected, and how much harder of a problem it would be to solve. We might have to accurately model the brain down the the intracellular level (e.g. – not just neurons simulated, but their surface receptors and ion channels simulated) to finally grasp how it works and produces intelligent thought. Considering that the best we have done up to this point is mapping the connections of a fruit fly brain and that a human brain is 600,000 times bigger, we won’t have detailed human brain simulation for many decades.

“It is recognized that the human genetic code does not specify the precise interneuronal wiring of any of these regions, but rather sets up a rapid evolutionary process in which connections are established and fight for survival. The standard process for wiring machine-based neural nets uses a similar genetic evolutionary algorithm.”

RIGHT

This prediction is right, but it’s not noteworthy since it merely re-states things that were widely accepted and understood to be true when the book was published in 1999. It’s akin to predicting that “A thing we think is true today will still be considered true in 20 years.”

The prediction’s first statement is an odd one to make since it implies that there was ever serious debate among brain scientists and geneticists over whether the human genome encoded every detail of how the human brain is wired. As Kurzweil points out earlier in the book, the human genome is only about 3 billion base-pairs long, and the genetic information it contains could be as low as 23 megabytes, but a developed human brain has 100 billion neurons and 1015 connections (synapses) between those neurons. Even if Kurzweil is underestimating the amount of information the human genome stores by several orders of magnitude, it clearly isn’t big enough to contain instructions for every aspect of brain wiring, and therefore, it must merely lay down more general rules for brain development.

I also don’t understand why Kurzweil wrote the second part of the statement. It’s commonly recognized that part of childhood brain development involves the rapid paring of interneuronal connections that, based on interactions with the child’s environment, prove less useful, and the strengthening of connections that prove more useful. It would be apt to describe this as “a rapid evolutionary process” since the child’s brain is rewiring to adapt to child to its surroundings. This mechanism of strengthening brain connection pathways that are rewarded or frequently used, and weakening pathways that result in some kind of misfortune or that are seldom used, continues until the end of a person’s life (though it gets less effective as they age). This paradigm was “recognized” in 1999 and has never been challenged.

Machine-based neural nets are, in a very general way, structured like the human brain, they also rewire themselves in response to stimuli, and some of them use genetic algorithms to guide the rewiring process (see this article for more info: https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414). However, all of this was also true in 1999.

“A new computer-controlled optical-imaging technology using quantum-based diffraction devices has replaced most lenses with tiny devices that can detect light waves from any angle. These pinhead-sized cameras are everywhere.”

WRONG

Devices that harness the principle of quantum entanglement to create images of distant objects do exist and are better than devices from 1999, but they aren’t good enough to exit the R&D labs. They also have not been shrunk to pinhead sizes. Kurzweil overestimated how fast this technology would develop.

Virtually all cameras still have lenses, and still operate by the old method of focusing incoming light onto a physical medium that captures the patterns and colors of that light to form a stored image. The physical medium used to be film, but now it is a digital image sensor.

A teardown of a Samsung Galaxy S10 smartphone reveals its three digital cameras, which produce very high-quality photos and videos. Comparing them to the tweezers and human fingers, it’s clear they are only as big as small coins.

Digital cameras were expensive, clunky, and could only take low-quality images in 1999, so most people didn’t think they were worth buying. Today, all of those deficiencies have been corrected, and a typical digital camera sensor plus its integrated lens is the size of a small coin. As a result, the devices are very widespread: 3.2 billion people owned a smartphone in 2019, and all of them probably had integral digital cameras. Laptops and tablet computers also typically have integral cameras. Small standalone devices, like pocket cameras, webcams, car dashcams, and home security doorbell cameras, are also cheap and very common. And as any perusal of YouTube.com will attest, people are using their cameras to record events of all kinds, all the time, and are sharing them with the world.

This prediction stands out as one that was wrong in specifics, but kind of right in spirit. Yes, since 1999, cameras have gotten much smaller, cheaper, and higher-quality, and as a result, they are “everywhere” in the figurative sense, with major consequences (good and bad) for the world. Unfortunately, Kurzweil needlessly stuck his neck out by saying that the cameras would use an exotic new technology, and that they would be “pinhead-sized” (he hurt himself the same way by saying that the augmented reality glasses of 2019 would specifically use retinal projection). For those reasons, his prediction must be judged as “wrong.”

“Autonomous nanoengineered machines can control their own mobility and include significant computational engines. These microscopic machines are beginning to be applied to commercial applications, particularly in manufacturing and process control, but are not yet in the mainstream.”

WRONG

A state-of-the-art microscopic machine invented in 2019 can move around in water by twirling its four “flippers.”

While there has been significant progress in nano- and micromachine technology since 1999 (the 2016 Nobel Prize in Chemistry was awarded to scientists who had invented nanomachines), the devices have not gotten nearly as advanced as Kurzweil predicted. Some microscopic machines can move around, but the movement is guided externally rather than autonomously. For example, turtle-like micromachines invented by Dr. Marc Miskin in 2019 can move by twirling their tiny “flippers,” but the motion is powered by shining laser beams on them to expand and contract the metal in the flippers. The micromachines lack their own power packs, lack computers that tell the flippers to move, and therefore aren’t autonomous.

In 2003, UCLA scientists invented “nano-elevators,” which were also capable of movement and still stand as some of the most sophisticated types of nanomachines. However, they also lacked onboard computers and power packs, and were entirely dependent on external control (the addition of acidic or basic liquids to make their molecules change shape, resulting in motion). The nano-elevators were not autonomous.

Similarly, a “nano-car” was built in 2005, and it can drive around a flat plate made of gold. However, the movement is uncontrolled and only happens when an external stimulus–an input of high heat into the system–is applied. The nano-car isn’t autonomous or capable of doing useful work. This and all the other microscopic machines created up to 2019 are just “proof of concept” machines that demonstrate mechanical principles that will someday be incorporated into much more advanced machines.

Significant progress has been made since 1999 building working “molecular motors,” which are an important class of nanomachine, and building other nanomachine subcomponents. However, this work is still in the R&D phase, and we are many years (probably decades) from being able to put it all together to make a microscopic machine that can move around under its own power and will, and perform other operations. The kinds of microscopic machines Kurzweil envisioned don’t exist in 2019, and by extension are not being used for any “commercial applications.”

Whew! That’s it for now. I’ll try to publish PART 2 of this analysis next month. Until then, please share this blog entry with any friends who might be interested. And if you have any comments or recommendations about how I’ve done my analysis, feel free to comment.

Links:

  1. Ray Kurzweil’s self-analysis of how accurate his 2009 predictions were: https://kurzweilai.net/images/How-My-Predictions-Are-Faring.pdf
  2. The inventor of the first augmented reality contact lenses predicted in 2015 that commercially viable versions of the devices wouldn’t exist for at least 20 more years. (https://www.inverse.com/article/31034-augmented-reality-contact-lenses)
  3. In late 2019, a Magic Leap One cost $2,300 – $3,300 and a Hololens was $3,000. https://www.cnn.com/2019/12/10/tech/magic-leap-ar-for-companies/index.html
  4. In 2019, a new Oculus Rift system cost $400 – $500, and a new HTC Vive was $500 – $800. (https://www.theverge.com/2019/5/16/18625238/vr-virtual-reality-headsets-oculus-quest-valve-index-htc-vive-nintendo-labo-vr-2019)
  5. In 2018, people across the world bought 259 million new desktop computers, laptops, and “ultramobile” devices (higher-end tablets that have large, detachable keyboards [the Microsoft Surface dominates this category]). These machines are meant to be accessed with traditional keyboard and mouse inputs. Keyboards aren’t dead.
    (https://venturebeat.com/2019/01/10/gartner-and-idc-hp-and-lenovo-shipped-the-most-pcs-in-2018-but-total-numbers-fell/)
  6. Survey data from 2018 about the global usage of “digital personal assistants.” Users speak to their smartphones or smart speakers, mostly to obtain simple information (like weather forecasts) or to have their computers do simple tasks. (https://www.business2community.com/infographics/the-growth-in-usage-of-virtual-digital-assistants-infographic-02056086)
  7. 2019 Pew Survey showing that the overwhelming majority of American adults owned a smartphone or traditional PC. People over age 64 were the least likely to own smartphones. (https://www.pewresearch.org/internet/fact-sheet/mobile/)
  8. A 2015 American Community Survey revealed that households headed by people over 64 were the least likely to have smartphones, PCs, or internet access. (https://www.census.gov/content/dam/Census/library/publications/2017/acs/acs-37.pdf)
  9. In 2000, 34% of Americans accessed the internet through dial-up modems, and only 3% did so through “broadband” (a catch-all for cable, DSL, and satellite access). Most U.S. internet users were still using dial-up modems that were at most 56k. The remaining 63% didn’t access it at all. (http://thetechnews.com/2016/01/03/usa-getting-faster-internet-speeds-but-not-at-the-pace-others-are/)
  10. In 2019, a mid-tier internet service plan in the U.S. granted users download speeds of 30 – 60 Mbps. (https://www.pcmag.com/news/state-by-state-the-fastest-and-slowest-us-internet)
  11. 2019 U.S. mobile phone network average speeds were 33.88 Mbps for downloads and 9.75 Mbps for uploads (https://www.speedtest.net/reports/united-states/ )
  12. The Black Friday 2019 circular for Newegg.com featured five models of printers for sale. Only one of them, the Brother HL-L2300D, wasn’t WiFi-capable. (https://bestblackfriday.com/ads/newegg-black-friday/page-12#ad_view)
  13. Gartner figures for global computer sales in 2015, 2016, 2017, 2018 and 2019.
    (https://www.gartner.com/en/newsroom/press-releases/2017-01-11-gartner-says-2016-marked-fifth-consecutive-year-of-worldwide-pc-shipment-decline)
    (https://venturebeat.com/2018/01/11/gartner-and-idc-agree-hp-shipped-the-most-pcs-in-2017/)
    (https://www.gartner.com/en/newsroom/press-releases/2020-01-13-gartner-says-worldwide-pc-shipments-grew-2-point-3-percent-in-4q19-and-point-6-percent-for-the-year)
  14. Intel’s i7 Generation 8 processor is capable of 361.3 gigaflop speeds. (https://www.pugetsystems.com/labs/hpc/Skylake-X-7800X-vs-Coffee-Lake-8700K-for-compute-AVX512-vs-AVX2-Linpack-benchmark-1068/)
  15. 3.2 billion people owned a smartphone in 2019. (https://newzoo.com/insights/trend-reports/newzoo-global-mobile-market-report-2019-light-version/)
  16. In 2019, 3D chips were common in memory storage devices, like MicroSD cards. 3D NAND chips had up to 64 layers. (https://semiengineering.com/what-happened-to-nanoimprint-litho/)
  17. In 2019, Intel was still working the kinks out of its first 3D computer processor, called “Lakefield,” and it wasn’t ready for commercial sales. (https://www.overclock3d.net/news/cpu_mainboard/intel_details_their_lakefield_processor_design_and_foveros_3d_packaging_tech/1)
  18. In 2019, computer circuits made of carbon nanotubules were still stuck in research labs, and held back from commercialization by many unsolved problems relating to cost of manufacture and reliability. Silicon was still the dominant computing substrate. (https://www.sciencenews.org/article/chip-carbon-nanotubes-not-silicon-marks-computing-milestone)
  19. “Compute cycle” has three meanings: #1 (https://www.zdnet.com/article/how-much-is-a-unit-of-cloud-computing/), #2 (https://www.quora.com/What-is-a-Compute-cycle) and #3 (https://www.computerhope.com/jargon/c/compute.htm)
  20. In a 2019 experiment, researchers were able to decode the words a person was speaking by studying their brain activity. (https://www.biorxiv.org/content/10.1101/350124v2)
  21. “The current ways of trying to represent the nervous system…[are little better than] what we had 50 years ago.”  –Marvin Minsky, 2013 (https://youtu.be/3PdxQbOvAlI)
  22. “Today’s neural nets use algorithms that were essentially developed in the early 1980s.” (https://futurism.com/cmu-brain-research-grant
  23. The inventor of “back-propagation,” which spawned many computer algorithms central to AI research, now believes it will never lead to true intelligence, and that the human brain doesn’t use it. (https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4947-a9b2-7a4c310a28fe.html)
  24. Henry Markram’s project to create a human brain simulation by 2019 failed. (https://www.theatlantic.com/science/archive/2019/07/ten-years-human-brain-project-simulation-markram-ted-talk/594493/)
  25. “Like, yes, in particular areas machines have superhuman performance, but in terms of general intelligence we’re not even close to a rat.” –Yann LeCun, 2017 (https://www.theverge.com/2017/10/26/16552056/a-intelligence-terminator-facebook-yann-lecun-interview)
  26. Machine neural networks are similar to human brains in key ways. (https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414)
  27. Some machine neural nets use genetic algorithms. (https://blog.coast.ai/lets-evolve-a-neural-network-with-a-genetic-algorithm-code-included-8809bece164)
  28. Quantum imaging is a real thing. However, devices that can make use of it are still experimental. (https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201900097)
  29. The Samsung Galaxy S10 is an upper-end smartphone released in 2019. It has three digital cameras, all of which operate on the same technology principles as the digital cameras of 1999. (https://www.digitalcameraworld.com/reviews/samsung-galaxy-s10-camera-review)
  30. The 2016 Nobel Prize in Chemistry was given to three scientists who had done pioneering work on nanomachines. (https://www.extremetech.com/extreme/237575-2016-nobel-prize-in-chemistry-awarded-for-nanomachines)
  31. Dr. Marc Miskin’s micromachines from 2019 are interesting, but a far cry from what Kurzweil thought we’d have by then. (https://www.inquirer.com/health/micro-robots-upenn-cornell-20190307.html)

Interesting articles, July 2020

Does the MiG-21 have an undeserved reputation for being unsafe to fly? Everyone agrees it is a difficult plane to land, but the high number of crashes seem due to poor maintenance and to the planes being used for roles they weren’t designed for.
https://www.quora.com/What-is-wrong-with-the-MiG-21-Why-do-they-keep-crashing-all-the-time

The MiG-29 has excellent aeronautical performance, had an advanced missile system for the 1980s and 90s, but is inferior to Western counterparts like the F-16 in every other way (inefficient engines that are a hassle to fix; weak radar; short range, old-fashioned cockpit that forces the pilot to constantly look at gauges, dials, and paper maps in his lap instead of looking out the canopy for enemies).
https://www.airspacemag.com/military-aviation/truth-about-mig-29-180952403/

What a mess: The Indian Army now imports three rifles from three countries that use three different sized bullets.
https://nationalinterest.org/blog/reboot/why-did-indian-army-decide-buy-sig-sauers-716-rifle-164532

Here’s a roundup of a few of the U.S. military’s failed military projects.
https://nationalinterest.org/blog/reboot/5-weapons-us-military-almost-built-disaster-165284

Seventy-five years ago, the first atom bomb was detonated.
https://www.latimes.com/business/story/2020-07-16/trinity-a-bomb-75-years-ago

The USS Yorktown was a U.S. aircraft carrier that sank during the pivotal Battle of Midway in 1942. After being bombed by Japanese planes, it started filling with water and leaning to one side. At 2:28 pm on June 4, all of its crew abandoned ship, convinced it would soon sink.

They were wrong. The damage was not fatal, and from the safety of another U.S. warship, they saw that the Yorktown was still afloat hours later. Fourteen hours after leaving, they started returning to the stricken carrier to fix it. They worked feverishly for the next 24 hours, and were making progress pumping water out of the ship, reducing its tilt. Unfortunately, a Japanese sub spotted them and torpedoed the carrier, this time destroying it for good. The sub also blew up another U.S. ship.

This makes me wonder what would have happened if the crew had never abandoned the Yorktown in the first place. That extra 14 hours of time might have enabled them to sufficiently repair and move the ship out of the area to prevent it from falling prey to the sub.
https://navylive.dodlive.mil/2013/06/02/battle-of-midway-timeline-of-significant-events/

The 1941 Pearl Harbor attack cost over 2,000 Americans their lives. In 1944, an accidental explosion involving naval ammunition killed another 163 to 392 people at the Harbor.
https://nationalinterest.org/blog/reboot/forgotten-history-1944-pearl-harbor-once-again-went-flames-164267

The B-1B bomber has a 1:1 digital simulation, and soon the UH-60L helicopter will, too.
‘It is taking each aircraft apart piece by piece, scanning them using high-fidelity scanners, and creating three-dimensional (3D) computer-aided design (CAD) models of the parts.’
https://www.janes.com/defence-news/news-detail/wichita-state-university-creates-digital-models-of-uh-60l-b-1b-aircraft

It costs $10.9 million to train a pilot how to fly an F-22 fighter, and $1.1 million to train one to fly a C-17 cargo plane. All the USAF’s costs for training pilots for its other types of planes are in between. Of course, that’s not the end of it. Those are only the costs of getting a new person UP TO the level of being able to fly their plane. Since people forget things, the pilots have to frequently undergo retraining and re-certification, which means more money spent each year (the RAND analysis doesn’t show those figures) as a continual expense. This means the cost savings of inventing computers that can fly warplanes as well as humans will be massive. There will also be no risk of pilots being shot down over enemy territory, captured, and used as political pawns.
https://www.forbes.com/sites/niallmccarthy/2019/04/09/the-cost-of-training-u-s-air-force-fighter-pilots-infographic/

The FAA doesn’t know who was responsible for the mass drone formations that flew over the Great Plains last winter.
https://www.thedrive.com/the-war-zone/34662/faa-documents-offer-unprecedented-look-into-colorado-drone-mystery

Are aliens hibernating until the day the universe gets colder? If they are intelligent machines, then they would generate a lot of heat, and a colder environment would let them radiate that heat more efficiently, allowing them to do more computation. “[If such aliens hibernated until the universe’s temperature dropped from 3 Kelvin to less than 1 Kelvin] they could achieve up to 10^30 times more than if done today.”
https://getpocket.com/explore/item/a-new-theory-on-why-we-haven-t-found-aliens-yet

Turing Award-winner John Hopcroft thinks machines will make human workers obsolete, and he points out that, just because humans have been able to climb up the skills ladder in the past faster than machines could automate old jobs, doesn’t mean we will be able to do that forever. Past trends don’t continue indefinitely, and there’s no reason why we couldn’t get into a situation where machines took over 1 million human jobs in a given year, but only 900,000 new jobs for humans were created during that same period. Hopcroft suggests dealing with this by spreading out the remaining jobs among more humans by finding ways to shorten the amount of time the average person works.
https://youtu.be/htfNuoJ3Ecc

Elon Musk is still scared of AI. He thinks they could get smarter than humans in five years, and that things would get “unstable or weird” shortly after. I think his prediction is way too optimistic, and what might happen in five years is a machine passing the Turing Test, meaning it can carry on conversations with people and answer questions as well as a human. Things will get “weird” after that because many people dealing with such machines will mistakenly assume that they are “intelligent,” and perhaps even smarter than humans (e.g. – you’ll be able to ask a machine to do a complex math problem, and it will give you the solution right away). But the Turing Test machines and the autonomous cars we’ll have by the end of this decade will not actually be intelligent, self-aware, or capable of creative thought. Only at the surface level will they seem so. I doubt a true AI will be built earlier than midcentury.
https://www.businessinsider.com/elon-musk-maureen-dowd-ai-google-deepmind-wargames-2020-7

Musk is one of the world’s richest men, and his business achievements have been extraordinary, but he also has many stalled and failed ventures. Also, Tesla’s high stock price is probably unjustified, and Musk’s claims about future growth and the introduction of fully autonomous car models are likely too optimistic.
https://www.latimes.com/business/story/2020-07-22/why-the-stock-market-is-so-high-and-tesla-even-higher

A coast-to-coast network of fast charging stations that can recharge an electric car battery in 20 minutes has been completed in the U.S.
https://mashable.com/article/electric-vehicle-charging-cross-country/

Intel is falling behind other computer chip manufacturers.
https://www.bbc.com/news/technology-53525710

An experiment shows that sound waves can be used to move tiny objects around inside of bodies.
https://www.pnas.org/content/early/2020/07/09/2011999117

The discovery that some colon cancers are caused by the bacterium F. nucleatum raises the possibility that a vaccine could be created, saving lives.
https://blogs.sciencemag.org/pipeline/archives/2020/07/22/bacteria-and-colon-cancer

A new algorithm can look at cell biopsy images and diagnose prostate cancer with almost perfect accuracy.
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30159-X/abstract

A farm combine can weigh over 20 tons. As the vehicles slow drive over farm fields, their tires compact the soil, damaging its ability to grow more crops. Smaller farm robots wouldn’t do this.
https://phys.org/news/2020-07-big-wheel-ruts-economic-losses.html

Solar panels are really helping Afghanistan’s heroin farmers.
https://www.bbc.com/news/science-environment-53450688

An experimental trimaran generates electricity from the ocean’s waves.
https://www.bbc.com/future/article/20200718-the-revolutionary-electric-boat-powered-by-the-ocean

Flooding has become a worse problem in New Orleans and some other coastal areas because of “land subsidence.” As humans pump aquifer water, oil, and natural gas out of the ground, all the little voids empty out, the dirt compacts, and the ground level sinks. This problem is not connected to global warming, and shows that some flooding is not due to rising sea levels or worsening storms.
https://www.csmonitor.com/Science/2016/0518/How-fast-is-New-Orleans-sinking-Faster-and-faster-says-new-study

The Mediterranean Sea was warmer during the Roman Era than it is today.
https://www.nature.com/articles/s41598-020-67281-2

Humans might have migrated to the Americas from Asia 10,000 years earlier than is widely believed.
https://www.nature.com/articles/s41586-020-2509-0

Genetic studies of black people in the Americas have revealed new information about the slave trade, and about the pervasiveness of white masters raping their female slaves.
https://www.bbc.com/news/world-africa-53527405

Cosmic rays are responsible for the right-handed chirality of DNA. If the rays are omnipresent in the galaxy and have the same energetic properties everywhere, alien DNA should share our chirality.

DNA and RNA are also more structurally suited to their roles storing genetic information than any other type of biomolecule, so it’s likely that all but the most primitive types of aliens will use DNA and RNA.
https://www.dailymail.co.uk/sciencetech/article-8483125/DNA-living-things-right-handed-bias-cosmic-rays-blasting-young-Earth.html

But what if aliens used some completely different type of biomolecule to store their genetic information? Well, then they’d probably be biochemically inefficient compared to us.
https://blogs.sciencemag.org/pipeline/archives/2019/09/18/and-now-for-a-bit-of-quantum-mechanics

Silicon-based, ORGANIC life forms are unlikely to exist.
‘Only a tiny fraction of the theoretical chemical space of silicon chemistry can be stable in water (Section 3.2.1). In fact, some of the commonly held views about the low diversity of silicon chemistry come directly from the instability of silicon chemistry in water. Silicon chemistry in water also requires substantially more energy to access than equivalent carbon chemistry (Section 3.3). For all of the above reasons, we argue in this subsection that silicon is unlikely to be a scaffold element or a common heteroatom element in water.’
https://www.mdpi.com/2075-1729/10/6/84

Infrared cameras can see through some plastics and fabrics that look opaque to the human eye.
https://www.thesun.co.uk/tech/12072610/oneplus-phone-x-ray-camera-clothes-plastic-banned/

Here’s an amazing upscaling of footage of Tokyo street scenes from the 1910s. Even better video reconstructions than this will be available in the future.
https://youtu.be/MQAmZ_kR8S8

In 1969, Richard Nixon’s speechwriters prepared an address for him to read to the nation in case the Apollo 11 moon landing failed. Using deepfake technology, we can see what it would have looked like.
https://youtu.be/LWLadJFI8Pk

In the 1970s, there was an ambitious project to compile a 6 million-page history of America from its founding to WWI into a document called the Library of American Civilization. It would have been in “ultrafiche” format, with each ultrafiche being 3″ x 5″ and containing up to 1,000 page images, shrunk from original size by a factor of 55 to 90. The idea was to distribute the document, along with ultrafiche readers, to every major library in America.
https://files.eric.ed.gov/fulltext/ED082753.pdf

Einstein and Leo Szilard invented three refrigerators.
https://www.youtube.com/watch?v=NpwyU96budw

Donald Trump was right! His prediction that either Bernie Sanders or Joe Biden would be the Democratic nominee for President was correct.
https://www.dailymail.co.uk/news/article-6930369/Trump-predicts-Biden-Sanders-2020-Dem-finalists.html

This prediction from May turned out wrong: ‘Professor Carl Heneghan from the Centre for Evidence-Based Medicine at Oxford University said: “I think by the end of June we’ll be looking at the data and finding it difficult to find people [in Britain] with [COVID-19], if the current trends continue in the deaths.”‘

The daily death toll never reached zero in June–the lowest point was 25 deaths on June 29th. Also, on the last day of the month, 689 Britions were diagnosed with COVID-19.
https://www.thesun.co.uk/news/11693720/coronavirus-study-predicts-date-uk-will-have-no-cases/

This is a smart, new metric: Number of positive results per 1,000 COVID-19 tests. It corrects for the fact that the number of daily tests is growing. That metric, along with the number of excess deaths above the expected baseline, is the most foolproof for understanding the scope and trend of the pandemic.
https://reason.com/2020/07/21/trump-is-wrong-spreading-epidemic-is-responsible-for-most-of-the-rise-in-covid-19-cases/

Bill Gates thinks the U.S. should send all its pre-teens back to school this fall, in spite of the disease risk.
https://www.cnbc.com/2020/07/28/bill-gates-on-back-to-school-during-coronavirus-pandemic.html

Preliminary results from one of the COVID-19 vaccines are good.
https://blogs.sciencemag.org/pipeline/archives/2020/07/20/more-pfizer-phase-i-results-antibodies-viral-mutations-and-t-cells

Interesting articles, June 2020

In a 2015 speech to the Chicago Council on Foreign Affairs, George Friedman predicted that Russia would start disintegrating around 2020, if not before. It hasn’t happened and there are no signs it is about to. (Skip to the 48:12 mark in this video)
https://youtu.be/QeLu_yyz3tc?t=2892

Josef Stalin was a sadist and a thug, but he had a notoriously poor grasp of warfare and military affairs. This rang especially true for the navy, which he ordered to build several battleships that would have been massive but horrible.
https://www.navalgazing.net/Soviet-Battleships-Part-2

Here’s an awesome video of nuclear bombs blowing up warships. Even if a ship is still floating afterward, the force of the shockwave has probably caused a lot of damage thanks to walls caving in and machinery and pipes being physically broken.
https://www.youtube.com/watch?v=bUcmZbyLXB0

And here are even more awesome photos of Mad Max vehicles in Kurdistan.
https://thedeaddistrict.blogspot.com/2020/06/kurdish-mad-max.html

Russia has sent mercenaries to help the rebel faction in Libya, and now Egypt says it might send its own troops there to support them further. The government forces are backed by Turkey, which has also sent troops there, and a few other countries. Does everyone agree at this point that the U.S. made a mistake helping to oust Qaddafi?
https://www.reuters.com/article/us-libya-security-egypt/egypt-has-a-legitimate-right-to-intervene-in-libya-sisi-says-idUSKBN23R0W1

Ukraine’s army released a fascinating analysis of its war with Russia. The #1 killer of its tanks was Russian artillery, followed by shoulder-launched missiles. Tank-on-tank duels were rare events, and I suspect most of those were lopsided engagements where the loser was destroyed by one shot and didn’t even realize an enemy tank was in the area.
https://thedeaddistrict.blogspot.com/2020/03/analisys-of-combat-damage-of-ukrainian.html

U.S. commandos in Syria are using “smart sights” on their rifles. The sights are big and bulky–about the size of a soda can and with wires coming out of them–but they will inevitably shrink as the technology improves. Smart sights and guided bullets will someday let any soldier be a sniper.
https://www.thedrive.com/the-war-zone/33794/special-operators-in-syria-are-first-american-unit-to-use-computerized-sights-on-their-rifles

Chinese and Indian troops had a massive brawl along their disputed border in the Himalayas. Twenty Indians and an undisclosed number of Chinese died in the fighting, where knives and spiked clubs were used (they mutually agreed to ban guns from the area to reduce the odds of bloodshed).
https://www.bbc.com/news/world-asia-india-53089037

China has finished building its own version of the GPS.
https://www.bbc.com/news/business-53132957

Space-X became the first, private company to launch humans into space. The two crewmen compared the ride favorable to the Space Shuttle, which both men flew on before its retirement.
https://www.foxnews.com/science/astronauts-falcon-9-rocket-was-totally-different-ride-from-the-space-shuttle

A private U.S. company has built an experimental stealth-y plane.
https://www.thedrive.com/the-war-zone/34003/scaled-composites-stealthy-demonstrator-jets-spotted-working-with-high-flying-proteus

A quad-copter “flying motorcycle” lost control and crashed during a demonstration in Dubai, nearly killing the pilot. It ain’t like it is in the Judge Dredd movie.
https://www.dailymail.co.uk/news/article-8409489/Shocking-moment-test-pilot-nearly-killed-hoverbikes-spinning-rotor-blades.html

Nineteen years after its debut, the Segway will halt production due to insufficient sales. The machine’s patents have also expired, so anyone can legally make copies. Segways didn’t radically alter ground transportation as its inventor hoped, but the rise of lightweight electric scooters shows there was merit to the idea. Segway just represented the wrong form factor.
https://www.npr.org/2020/06/23/882536320/after-nearly-two-bumpy-decades-the-original-segway-will-be-retired-in-july

Thermoelectric stoves convert heat into electricity. Imagine an electric Jeep with one such stove for a motor. Two robot workers would sit in the front seats. It would drive through areas where there was a high risk of forest fires. The robots would get out, chop up dead trees and dry wood lying on the ground, load it into the stove, and burn it to make electricity to charge their batteries and the Jeep’s. Once all the combustible material in the area was burned, they would drive to the next area and repeat.
https://solar.lowtechmagazine.com/2020/05/thermoelectric-stoves-ditch-the-solar-panels.html

Fish “migrate” from one isolated lake to another when birds eat fish eggs at one lake, and then excrete them in their feces at another lake. Some of the eggs can survive passage through a digestive tract.
https://phys.org/news/2020-06-fish-migrate-ingestion-birds.html

At last, a good explanation for why plants are green instead of black. The intensity level of the green wavelengths of light fluctuate the most on the Earth’s surface, and those variations would wreak havoc on a plant’s cells.
https://www.insidescience.org/news/plants-are-green-because-they-reject-harmful-colors

Human vision is pretty weak. We only see details and color in a narrow, forward-facing cone.
https://www.discovermagazine.com/mind/how-much-color-do-we-really-see

There’s growing evidence that transfusing blood from young people into old people improves the latter’s health. A new experiment suggests that an even simpler technique of removing half an old person’s blood and simultaneously replacing it with an equal volume of saline water and proteins might also be beneficial.
https://blogs.sciencemag.org/pipeline/archives/2020/06/12/young-blood-and-old-blood

A medical paper published last month in the Lancet claimed that the anti-malaria drug hydroxychloroquine actually increased the overall odds of dying among people who took it to treat COVID-19. People from many quarters quickly jumped on it as proof that President Trump’s advocacy of the drug was mistaken. However, the paper was recently retracted after nonpartisan scientists pointed out it didn’t include enough data supporting its conclusion.
https://www.npr.org/sections/coronavirus-live-updates/2020/06/04/870022834/authors-retract-hydroxychloroquine-study-citing-concern-over-data

But it’s not over…the FDA withdrew its endorsement of hydroxychloroquine as a treatment for COVID-19 because other, better studies showed it did nothing, but still induced the negative (but not lethal) side effects that have been known for decades. President Trump had previously claimed he was taking it prophylactically.
https://www.bbc.com/news/world-us-canada-53054476

People with type A blood are the most vulnerable to COVID-19.
https://www.nytimes.com/2020/06/03/health/coronavirus-blood-type-genetics.html

We still don’t know if surviving COVID-19 gives a person permanent or temporary immunity to reinfection. Additionally, it’s possible that the first vaccine may only provide partial protection from the disease, and that its effect could wear off over time, requiring people to get booster shots. (There’s nothing surprising about this: the last flu vaccine was only 45% effective.)
https://blogs.sciencemag.org/pipeline/archives/2020/06/22/thoughts-on-antibody-persistence-and-the-pandemic
https://blogs.sciencemag.org/pipeline/archives/2020/06/15/what-might-go-wrong

Surprisingly, the George Floyd mass protests didn’t lead to spikes in COVID-19 infections. It seems very hard for the virus to spread among people who are outdoors, wearing surgical masks, and keeping a few feet of distance from each other. It is vastly more infectious in crowded, enclosed environments.
https://www.wired.com/story/what-minnesotas-protests-are-revealing-about-covid-19-spread/

The COVID-19 quarantines are actually unlikely to produce a baby boom. Instead, there will probably be 300,000 – 500,000 fewer U.S. births across 2020 and 2021, mostly due to potential parents having financial problems.
https://www.brookings.edu/research/half-a-million-fewer-children-the-coming-covid-baby-bust/

America’s leading public health expert has admitted what many have suspected: earlier this year, the government lied about the effectiveness of surgical masks in blocking the spread of COVID-19 because it didn’t want ordinary people to panic buy all of them, leading to shortages at hospitals.
https://www.thestreet.com/video/dr-fauci-masks-changing-directive-coronavirus

In the U.K., South Asians are the likeliest race of people to die of COVID-19 because they have the highest rates of diabetes and hence weakened immune systems. South Asians have a genetic predisposition to diabetes, made worse by the fact that their traditional diets are fatty.
https://www.bbc.com/news/health-53097676

The architect of Sweden’s hands-off response to the COVID-19 pandemic has admitted it was a mistake, and that more of his people died than would have had they adopted the same strict lockdowns as other European countries.
https://www.bbc.com/news/world-europe-52903717

This model’s prediction of 110,000 COVID-19 deaths in the U.S. by June 6th was almost perfectly accurate. Today it says deaths will hit 147,000 by the end of July.
https://www.npr.org/sections/health-shots/2020/05/13/855038708/combining-different-models-new-coronavirus-projection-shows-110-000-deaths-by-ju
https://viz.covid19forecasthub.org/

If you think things are bad in the world right now with the pandemic, social unrest, and all the other stuff, crack open a history book and realize how good we have it in the grand scheme of things. Be thankful you weren’t alive in Europe in 43 B.C., when the Roman Empire not only fell into civil war, but starvation became rampant because a volcanic eruption in Alaska dimmed the skies, killing farm crops around the world.
https://www.pnas.org/content/early/2020/06/17/2002722117

A convicted murderer has solved an ancient math problem in prison.
https://www.dw.com/en/murderer-solves-ancient-math-problem-and-finds-his-mission/a-53895884

“Internet sleuths” trying to track down an unknown man caught harassing people on video misidentified him and spread the wrong person’s contact information across the internet. Almost immediately, he got a surge of angry, threatening electronic messages.
https://nymag.com/intelligencer/2020/06/what-its-like-to-get-doxed-for-taking-a-bike-ride.html

Here’s an amazing and in-depth interview with AI researcher Joscha Bach.
https://www.youtube.com/watch?v=P-2P3MSZrBM

A new computer program can generate photorealistic illustrations of human faces based on crude sketches.
https://www.engadget.com/ai-can-produce-detailed-photos-of-faces-from-simple-sketches-122924655.html

Flat-panel TVs have come a long way from the fuzzy, motion-juddering, narrow-viewing-angle devices I remember from 15 years ago, and there’s room for them to improve farther.
https://youtu.be/RTTiQeXXrhI

The Tesla Model S now has an improved battery pack that gets 402 miles per full charge. That’s more than my gas-powered car.
https://www.tesla.com/blog/model-s-long-range-plus-building-first-400-mile-electric-vehicle

“The first piston steam engine, developed by Thomas Newcomen around 1710, was slightly over one half percent (0.5%) efficient.”
https://en.wikipedia.org/w/index.php?title=Engine_efficiency&oldid=958282962

The massive Ford car factory site at River Rogue, MI had a “car disassembly plant” from 1930-44. Hundreds of men worked there, systematically stripping parts off of Fords and other brands of cars, reusing or reselling what was still good, and melting down the rest to make metal for new Fords. I predicted this will return by the end of the 2030s thanks to cheap robots: “The same kinds of facilities will make inroads into the junk yard industry, as they would have all the right tooling to cheaply and rapidly disassemble old vehicles, test the parts for functionality, and shunt them to disposal or individual resale. (The days of hunting through junkyards by yourself for a car part you need will eventually end–it will all be on eBay. )”
https://link.gale.com/apps/doc/A80344909/AONE?u=googlescholar&sid=AONE&xid=b0a3b483

Q: “How Will You Get Robots to Pay Union Dues?”
A: “How Will You Get Robots to Buy Cars?”
These are funny quips, probably exchanged between Henry Ford and union leader Walter Reuther in the 1950s, but the insinuation that it will forever be impossible to cut humans out of the economic loop is mistaken. There’s no theoretical reason why there couldn’t someday be a factory run entirely by robots that made cars bought entirely by other robots.
https://quoteinvestigator.com/2011/11/16/robots-buy-cars/

What would a human-equivalent robot look like?

In my Terminator review and my analysis of what a fully-automated tank would look like, I mentioned that human-sized, general-purpose robots that can do the same physical tasks as humans will not necessarily look like humans, or even have humanoid body layouts (i.e. – head, large torso, two arms, two legs). I’d like to explore that idea in greater depth, and to offer educated guesses about what such robots would look like.

First, bear in mind that there are already countless numbers of robots in the world–overwhelmingly in factories and controlled work settings–and almost none of them are humanoid. Instead, their body shapes are entirely dictated by their narrow functions. For example, a robot that welds the seams between two sheets of metal comprising part of a car’s frame will resemble a giant arm and will have a welding torch for a hand. Since it is meant for use in a car factory assembly line where unfinished car frames will be delivered to it via conveyor belt, the robot won’t need to move from that spot, and hence won’t need legs or wheels. And since the act of welding a seam isn’t that complicated, it won’t need a giant computer brain, meaning it won’t have a head. Likewise, a robot designed to move supplies like medicine and linens throughout a hospital will take the form of a large, hollow box with wheels.

Even as robots get cheaper and more advanced in the coming decades and take over more jobs, the vast majority of them will continue looking nothing like humans, and will be designed for specific and not general tasks. Fully-autonomous vehicles, for example, will count as “robots,” but will not resemble humans.

That said, I think “overspecialization” of robot designs will prove inefficient, and that there will be niches for general-purpose robots in many areas of the economy and ordinary life. Some of these general-purpose robots will be about the same sizes as humans, but they won’t look exactly like us. Consider that the humanoid body layout is inherently unstable since it is top-heavy and only has two legs to balance on. If we had millions of bipedal, human-sized robots walking around and intermixing with us in many uncontrolled environments, there would be constant problems with them falling over (or being pushed over) and injuring or killing people. Something like a 250 pound Terminator made of hard metal would be a lawsuit waiting to happen.

Off the bat, it’s clear that general purpose robots can’t be so heavy that, if one fell on you, you would be seriously hurt, and/or unable to push it off of your body. At the same time, it can’t be so light that it tips over when carrying everyday objects like full trashcans, or is even at risk of being toppled by wind gusts. Splitting the difference between the average weights of adult men and woman gives us a figure of 180 lbs, which I think is a good upper limit to how much the robots could weigh.

Also off the bat, it’s clear that the general purpose robots should have the lowest practical centers of gravity and need to have soft exteriors to cushion humans against collisions. A low-hanging fruit helps us solve the first requirement: delete the robot’s head. This might sound very weird, but if we’re unbound by the constraints of biology and are designing a robot from metal and plastic starting from a clean slate, it makes perfect sense.

Since robots won’t eat, drink, or breathe, they won’t need mouths, noses, or any associated anatomical features found in human heads and necks. And since signals from the robot’s sensory organs would travel to its “brain” at the speed of light, there would be no advantage to clustering the eyes, ears, and brain together to reduce lag (thanks to the slowness of human nerve impulses, it takes about 1/10 of a second for an image or sound that has been detected by the eyes or ears to reach the brain), meaning the CPU could be moved into the torso. Doing that would lower the robot’s center of gravity and give the CPU more physical protection than our skulls provide our brains. (Distributing mental functions among several computer cores in different parts of the torso and even limbs would probably be an ideal setup since it would further improve survivability.)

In place of a neck and head, there might be a telescoping, flexible “stalk” or “tentacle” with sensory organs (camera lens, microphone) at its tip. It could extend and shorten, and swivel in any direction. By default, it would probably be facing forward and raised to the same height as a typical human head so it could see the world from the same perspective as we. The top of its torso might only be 4′ 10″ off the ground, but the stalk would rise up another foot. The sci fi space film Saturn 3 had an evil robot named “Hector” that had a crude tentacle like this in place of a head.

“Hector” the robot didn’t have a head. Note that the robots I envision would be much shorter than this.

The last safety requirement that I mentioned, the need to have soft exteriors to cushion humans against collisions, could be satisfied by making their outer casings from a spongy material like silicone. However, I think it would probably be cheaper and just as effective to give the robots hard outer casings, but have them wear tight-fitting, padded clothes. The general-purpose robots would know how to wash their clothes in standard laundry machines and would periodically do so. Also, if the padding were made of the plastic foam found in life jackets, it would keep the robots from sinking to the bottom if they, say, fell into a swimming pool while cleaning it, or fell off the side of a fishing boat where they were part of the crew.

The need to protect people from accidental injury will also mean that general purpose robots will be made no faster or stronger than average humans. These limitations would be very helpful to us in a “robot uprising” scenario, but they’d be just as beneficial preventing many kinds of small, mundane accidents that could hurt people. For example, if your robot isn’t stronger than you, it can’t accidentally crush your hand by applying too much pressure during a handshake. If it can’t move faster than a jog, it can’t ever build up enough speed and momentum to collide with you with fatal force.

The NS-5 robots could jump long distances and do acrobatics.

With these safety requirements in mind, it should be clear why the general-purpose “NS-5” robots in the movie I, Robot was unrealistic. There was no reason to give those robots superhuman speed, strength, agility, and explosive movement. Moreover, they all had hard exoskeletons and walked around “nude,” making them collision hazards. (On a side note, I also thought it was unrealistic that a single company–“U.S. Robotics”–would have an apparent monopoly on the humanoid robot market, and that all humans would own the same kind of robot. In reality, there will be many companies making them in the future, and there will be many different robot models and variants that will look different from one another, just as there’s great diversity in how cars look today.) 

Now that I’ve covered the safety issues general-purpose robots will have to be designed to address, let’s move on to exploring the other requirements that will affect how they will look. Since they’ll have to navigate human-built environments like houses and to fit into vehicles designed for us, they will need legs instead of wheels so they can climb steps, arms and hands for opening doors and using tools, and they will need to be skinny and short enough to fit through standard-sized doorways. The requirement for them to be able to sit in chairs and climb over obstacles like low fences and fallen tree trunks will mean the size proportions of their limbs and bodies won’t be able to stray too far from those of humans. They will need fingers that are as thin as ours to type on keyboards and push standard-sized buttons, but they might not have five fingers per hand (it will be interesting to see what the optimal number turns out to be).

It wouldn’t cost much more money to make the joints in the robots’ fingers and everywhere else double-jointed, and they’d gain useful dexterity from such a feature, so I think it would be so. Pivot joints in the arms and legs would also allow for 360 degrees of rotation, further bolstering utility. At first I thought the general purpose robots would have a second set of arms–for a total of six limbs–so they could be more able than humans, but then I realized how wasteful that would be since so few tasks require them. 99% of the time, the second set of arms would uselessly hang down off the robot’s body and be dead weight.

Then again, that 1% of the time when you do need the extra pair of hands to do something could warrant some kind of engineering compromise. The prehensile sensor stalks that stand-in for heads on our general-purpose robots could elongate and grasp onto things, acting like weak third hands (our mouths do the same, and can hold smell, light objects). Instead of, or in addition to that, the legs at the bottom of the robot could terminate in hands instead of feet like ours. Chimpanzees are like this, and many birds also have feet they use for grasping and walking. The setup would make it harder for the robots to run, and maybe less energy-efficient for them to walk, but we’ve already established we don’t want them to be able to run fast, and many of the tasks we’d use these robots for wouldn’t require large amounts of walking anyway (ex – robot butler in your house). Aside from giving them an extra pair of hands for those rare occasions when they need it, having hands as feet would let the robots pick things up from the ground, climb ladders more easily, and maintain better balance on uneven surfaces like roofs.

It almost goes without saying that the robots would be able to walk on all fours about as well as they could walk on two legs. If they weren’t carrying anything and were just going from one place to another, walking on all fours would be safest since that would minimize the risks of them losing balance and crushing someone or breaking something. This is again reminiscent of chimps, and I think the robots might use their “knuckles” when walking on all-fours to keep the palms of their hands clean and undamaged. And interestingly, in laying out this new requirement for optional quadrupedalism, the hypothetical general-purpose robot’s design has superficially converged with the real-life “Spot” robot, made by Boston Dynamics.

“Spot” is a real robot you can buy.

One thing I don’t like about Spot’s design is that its torso is a single, rigid piece. The general-purpose robots I’m envisioning–or at least the more advanced variants of it that will be fielded in the more distant future–will need segmented torsos that let them bend and lean a little in all directions. The flexibility of our spines lets us do this, helping us to quickly make small postural adjustments to balance on two feet. The robots might not need anything as elaborate as a human back made of 33 vertebrae, and, as with the number of fingers, it will be interesting to see what the optimal (or sufficient) number of torso segments turns out to be.

Having a flexible torso, four hands, and four, highly flexible limbs that could bend in more ways than we can would also let the general-purpose robots comfortably touch any part of their own bodies, enabling them to self-repair, which would be an invaluable feature. The swiveling sensor stalk plus tiny cameras built into other parts of its body like the hands and torso would also let it see every part of its own body (cameras built into the hands or fingers would also let it reach inside small, tight spaces and clearly see what is inside, letting it guide the appendage, unlike humans who must blindly feel around in such situations). Contrast this with us humans, who have a hard time touching and manipulating some parts of our bodies (like the spot between our shoulderblades) and who can’t see every part of our own bodies because we have only one set of eyes that are in a head with limited rotation.

On that note, having small cameras embedded throughout its body would also eliminate blind spots, which would improve safety since the robots wouldn’t be at risk of running into humans or objects because they were unseen. Whereas human vision is confined to a forward-facing cone, the general purpose robots would see in a 360-degree bubble. The tip of the head stalk might have the biggest and best camera, but losing it wouldn’t blind the robot.

Having “eyes” in the torso and on all four limbs, along with a distribution of its mind and power sources among multiple internal computers and batteries in each place, could enable such a robot to fix itself even if only one limb were operational and everything else were not. Again, this reminds me a bit of something I’ve seen in the animal kingdom, this time among certain insects and spiders. Because they have less-centralized nervous systems than we, their limbs will keep moving after being severed, and, if they are cut in half across the torso, both halves will continue moving and reacting to stimuli.

Additionally, while the robots wouldn’t need to breathe, they should have an ability to suck in, retain, and expel air. This would allow them to duplicate the human abilities to blow out candles or blow dust off of things, and to make our bodies buoyant for floating in water. Of course, the engineering solutions that will let them do this could be totally different from human anatomy’s solutions. A small hole at the tip of one finger could be used to suck in and expel air, and it could be connected to a long tube that would lead to air sacs throughout the robot’s body, perhaps in places not analogous to where lungs are in our bodies.

The robots would also need to be waterproof. This would save them from being expensively damaged or destroyed by something as simple as rain, and would let them periodically clean themselves off with soap and water. Even without sweat glands and shedding skin cells, robots would inevitably get dirty thanks to dust in the air, splatter from kitchen or bathroom chores, or even mold growth. Being able to use a regular shower or a bucket of water and a sponge to clean themselves would be a very important feature, in addition to their ability to clean their clothes.

Another crucial feature would be a built-in power cord that could plug into standard electrical outlets. It might be stored internally in a small, closed compartment, or might take the form of retractable prongs located in one of the hands or feet. I suspect that, rather than get in your way, general-purpose robots will be programmed to run around your house and do chores when you were away at work or school. That would also be safer since it would eliminate any risk of the robots hurting you by accident while they were working. You would come home each day to a clean house and see your robot motionless in its designated corner or closet, plugged into an electrical outlet to recharge.

Machines like this can detect a wide range of poisonous chemicals.

I’ve already mentioned the robots would need to have cameras and microphones to duplicate the human senses of sight and hearing, but they would also need to duplicate our sense of smell and taste to a degree. Those two senses can provide valuable information about the presence of poisonous gases, smoke, or spoiled food ingredients, and there are situations where a robot would be grossly ill-equipped to respond properly if it lacked them. Our multipurpose robots would thus need air sampling devices and some type of fluid analysis capability. The same technology found in smoke detectors, carbon monoxide detectors, and military poison gas detectors could stand in for a sense of smell. To crudely duplicate our sense of taste, the robot might have something like a litmus strip dispenser and water nozzle built into one of its hands. It could spray water on objects and then touch them with a strip to “taste” them.

The fifth human sense, touch, would need to be duplicated by pressure and temperature sensors distributed throughout the general purpose robot’s body. This feature would be simple to implement.

In conclusion, I predict there will be a future niche for “human-equivalent” robots that are general-purpose, human-sized, and can do all of the physical work tasks that we can do. That said, those robots will look very different from us, as they won’t be bound by the rules of biology or by the genetic path dependence that locks us into our human body layout. I’ve gone into depth describing one type of general-purpose robot, which could be described as a “headless humanoid.” However, I think robots with other types of body layouts could also fill the niche, perhaps including “centaurs”, “big ants”, and “dogs with one arm on their backs.” Just as there are many types of vehicles on the roads today that fulfill the same roles, I am sure there will be many types of general-purpose robots. I simply don’t have the time to envision and describe what each one could be like.

General-purpose, human-sized robots will of course not be the only kinds of robots we’ll mix with on a daily basis in the future, and in fact, I think they will be outnumbered by other, specific-purpose robots whose forms reflect their specialized functions. Self-driving cars and autonomous lawnmowers are good examples.

Finally, the general-purpose, human-sized robots must not be confused with androids, which will look identical to humans. I think the general-purpose robots will be used for jobs that don’t require anything more than superficial interaction with humans, like scrubbing toilets, restocking store shelves, and fixing appliances. Androids would be built to provide companionship, and to do service-sector jobs where warm and personable service was expected. If your beautiful android spouse broke, then your grubby, headless, weird-looking robot servant would fix it.

Interesting articles, May 2020

The Philippines Presidential Security Group

The Philippines “Presidential Security Group” has the most interesting camouflage uniforms I’ve seen. As wacky as it looks, it actually adheres to the best principles of military camouflage (coarse pixelation, use of parallel and perpendicular lines and hard angles instead of wavy lines). If you changed the color scheme to black with earth-toned green and brown, it would probably do an excellent job concealing you in vegetated areas from people looking at you from typical combat distances (50 meters and above).
https://youtu.be/ZpsXwolf0Oo

A very bold and recent prediction that didn’t fare well.
https://www.dailymail.co.uk/news/article-8277471/North-Korean-defector-says-99-sure-Kim-Jong-dead.html

The Kennedy administration considered building a nuclear bunker 3,500 feet under the Pentagon that could survive 200 megaton surface detonations. The biggest nuclear weapon ever built was ONLY 50 megatons.
https://www.thedrive.com/the-war-zone/33003/the-pentagons-plan-to-build-a-secret-super-command-bunker-3500-feet-under-washington-d-c

During WWII, the British aircraft carriers had 3 inch-thick armor plates right under their flight decks, and also armored walls around the hangars right below that. Because of this, they could carry fewer planes than the un-armored American carriers, but they were also more durable. Several British aircraft carriers probably would have sunk had it not been for their armored decks.
https://nationalinterest.org/blog/buzz/were-royal-navys-armored-aircraft-carrier-decks-worth-it-152081

After the U.S. had to dock its two Pacific aircraft carriers due to epidemics of COVID-19 among their crews, China sent its own aircraft carrier battle group out, alarming Taiwan.
https://www.scmp.com/news/china/military/article/3079546/taiwan-scrambles-warships-pla-navy-aircraft-carrier-strike

A new analysis about China’s growing naval strength reveals that they could achieve numerical superiority over the U.S. Navy in a conflict in the Western Pacific.
https://fas.org/sgp/crs/row/RL33153.pdf

One of China’s army training bases has a full-size replica of Taiwan’s Presidential Building.
https://www.thedrive.com/the-war-zone/33591/chinas-biggest-base-has-huge-replicas-of-taiwans-presidential-building-and-the-eiffel-tower

Francis Fukuyama thinks that Xi Jinping has made China less free than it was 10 years ago, and that the U.S. should now treat it as an enemy with global ambitions.
https://www.the-american-interest.com/2020/05/18/what-kind-of-regime-does-china-have/

You know you’re broke when your best tank is a T-34, and you shoot it by standing outside and pulling on a long rope tied to the trigger because you’re afraid it might blow up.
https://youtu.be/eMMCYWxAtco

This thermal camera video of a Russian tank parade show that much of a tank’s heat signature comes from its wheels and tracks. As the tank drive around, those metal parts rub against each other, producing heat through friction. I don’t see how this can be ameliorated.
https://www.youtube.com/watch?v=q6RZ9l_Fw4U

As warfare gets more advanced and sensor/communication-dependent, the size and prominence of each field unit’s “electronic emission signature” grows.
https://www.thedrive.com/the-war-zone/33401/this-is-what-ground-forces-look-like-to-an-electronic-warfare-system-and-why-its-a-big-deal

Ukraine’s military lost half of its aircraft in the first year of war with Russia. While many were destroyed in combat or were captured, some were deleted from the official inventory because they were found to be nonfunctional due to years of neglect when Ukraine desperately tried to activate its whole arsenal.
https://nationalinterest.org/blog/buzz/how-russia-nearly-wiped-out-ukrainian-air-force-141857

The U.S. Army is working on small, flying surveillance drones that infantrymen can send airborne using standard 40mm grenade launchers.
https://www.army.mil/article/234300/grenade_launchers_able_to_fire_armys_new_camera_drones

Boko Haram attacked and defeated a garrison of Chadian soldiers, killing almost 100 of them and capturing their weapons. This is the deadliest terrorist attack in that country.
https://www.crisisgroup.org/africa/central-africa/chad/derriere-lattaque-jihadiste-au-tchad

Russia has sent fighter planes and ground units of its private military contractors to fight for the rebels in Libya’s ongoing civil war. Turkey supports the embattled central government and sent troops to help earlier this year. Syria is of course another battleground between Russian and Turkey proxies.
https://www.foxnews.com/world/russian-camouflaged-fighter-jets-deployed-to-libya-to-back-rebel-air

A large Venezuelan navy patrol ship tried to capture a German cruise ship in the Caribbean. The warship rammed it, not realizing that the other ship had a reinforced hull for breaking through ice, and damaged itself so badly that it sank. The cruise ship had minimal damage.
https://www.dailymail.co.uk/news/article-8189463/Moment-Venezuelan-warship-RAMS-German-liner-Caribbean-sinks.html

A Mickey Mouse plot to take over Venezuela, and involving at least two military contractors from the U.S., failed. It was so amateurish that it’s doubtful the U.S. government ordered it to proceed.
https://www.thedrive.com/the-war-zone/33322/breaking-down-the-absolutely-batshit-botched-coup-attempt-against-venezuelas-maduro

The Apollo 13 near-disaster mission happened 50 years ago. Videos that the crewmen filmed have been used to make new, hi-res still photos through a process that compared the images from multiple frames of video film that showed the same scene (a video camera from that era shot 24 frames per second). It’s similar to the single-pixel camera I linked to in a past blog entry.
https://www.bbc.com/news/science-environment-52264743
http://news.mit.edu/2017/faster-single-pixel-camera-lensless-imaging-0330

The explosion that caused the Apollo 13 crisis resulted from an incredible series of small malfunctions. Also, had the explosion happened a few hours before or after it actually did, the crewmen would have all died.
https://io9.gizmodo.com/the-checklist-of-what-had-to-go-wrong-for-apollo-13-to-1697567898

“Fata morgana” is a rare atmospheric phenomenon that doubtless explains many UFO sightings.
https://www.popularmechanics.com/science/a32389233/optical-illuson-fata-morgana-ufo-flying-ship/

This video explains why exotic forms of communication, like using only smells, touch, or gravity waves, are impractical and grossly inferior to the forms of communication we use (speech, looking at writing, radio signals). Also, it makes the point that aliens could learn human languages by listening to our radio broadcasts and finding simple patterns, like the fact that the word “breakfast” is mentioned most often in the mornings, and is usually associated with words relating to food and hunger. They could learn our languages, at least to an elementary degree, without interacting with us.
https://www.youtube.com/watch?v=thdC-HlRHWg

This video provides a good overview of radar jamming. Radar is of course used to detect the locations of planes and ships. A radar station does this by sending out beams of radio waves, and then waiting to see if any of those waves bounce off a solid object and are reflected back to the station. The radar’s computer compiles any such echoes into a visual representation of the planes and ships, which looks like the familiar, circular computer screen image of little white dots against a black background. A human sits at a chair watching this screen. To jam a radar, you point a radio emitter of your own at the radar station and shoot powerful radio beams at it. The radar station’s receiver is overloaded, and the circular screen displays static, or goes 100% white. It’s conceptually the same as blinding a human by shining a very bright flashlight in his eyes.
https://www.youtube.com/watch?v=su44ZU7NcQU

Air radar coverage map

Large parts of America’s airspace are not monitored by aircraft radars.
https://www.washingtonpost.com/news/capital-weather-gang/wp/2015/07/22/u-s-radars-have-come-a-long-way-but-gaps-in-coverage-remain-big-a-risk/

Before radar was developed, militaries would use “acoustic mirrors” to listen for the approach of enemy planes.
https://en.wikipedia.org/wiki/Acoustic_mirror

“Artillery sound ranging” is a technique in which the location of a piece of enemy artillery is triangulated by measuring the time delay between when the blast of its discharge is heard at different locations. This can also be used to find sources of small arms fire.
https://en.wikipedia.org/w/index.php?title=Artillery_sound_ranging

An American private military company has bought Romanian dictator Nicolae Ceaușescu’s personal Boeing 707 and plans to turn it into an aerial refueling plane.
https://www.thedrive.com/the-war-zone/32962/romanian-dictators-boeing-707-makes-first-flight-in-years-for-delivery-to-air-refueling-firm

The article doesn’t make the case that the 737 Max’ computer hardware was the problem. Flying a plane is complicated, but there are only so many variables your computer needs to keep track of, and a 20-year-old processor design might be fully adequate (by the same token, a Godlike supercomputer would not be better at tic-tac-toe than a teenager). Rather, a particular software algorithm installed in the 737 Max planes was the real defect.
https://www.theverge.com/2020/4/9/21197162/boeing-737-max-software-hardware-computer-fcc-crash

The “Baltimore Stockbroker Scam” is kind of ingenious. It touches on a point I made about good futurism: ‘You can be right thanks to luck alone, and “a stopped clock is right twice a day.”’
http://livingstingy.blogspot.com/2020/05/how-to-predict-future-simply-predict.html

The Apple Watch is five years old.
https://en.wikipedia.org/w/index.php?title=Apple_Watch&oldid=956160178

The average human’s brain size has significantly shrunk over the last 20,000 years. Have we gotten dumber as a result? Maybe.
https://www.discovermagazine.com/the-sciences/if-modern-humans-are-so-smart-why-are-our-brains-shrinking

Most of the fruit fly’s brain has been mapped. It’s a step forward, though it should be remembered that a human brain has 600,000 times as many neurons. Mapping the brains of progressively larger, smarter animals will be a long pathway to building AI.
https://www.biorxiv.org/content/10.1101/2020.04.07.030213v1

Another small step towards building an AGI: “With Agent57, we have succeeded in building a more generally intelligent agent that has above-human performance on all tasks in the Atari57 benchmark.”
https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

The rise of AI will revolutionize warfare because it will let countries build arbitrarily large numbers of combat robots. The size of a country’s military will no longer be limited by the size of its human population. Conventional warfare will become as big a threat to humanity’s existence as nuclear war is now.
“We envision fleets of smaller, multi-mission vessels, operating with surface warfare leadership. People talk about a 355-ship Navy, how about a 35,000-ship Navy?,” Maj. Gen. David Coffman…[he] explained it as a “family of combatant craft, manned and unmanned, integrated in a distributed maritime operation.”
https://nationalinterest.org/blog/reboot/autonomous-navy-ships-could-revolutionize-amphibious-assault-156481

It will be interesting to see the prototype ship designs that result from this.
‘NOMARS will challenge the traditional naval architecture paradigm, designing a seaframe from the ground up with no provision, allowance, or expectation for humans at sea. By removing the human element from all ship design considerations, NOMARS will demonstrate significant advantages, to include size, cost (procurement, operations, and sustainment), at-sea reliability, survivability to sea-state, survivability to adversary actions (stealth considerations, resistance to tampering, etc.), and hydrodynamic efficiency (hull optimization without consideration for crew safety or comfort).’
https://beta.sam.gov/opp/fd0ba75d1ef64d569db637571f659dbb/view

The examples of the Spanish and Portuguese conquistadors might offer insights into how AGIs could take over the world. Machines could play different human groups against each other, and then turn on their allies at the end.
https://www.lesswrong.com/posts/ivpKSjM4D6FbqF4pZ/cortes-pizarro-and-afonso-as-precedents-for-takeover

This interesting exploration of “slack” underscores why species and civilizations are more successful if they all for some diversity, even if that diversity makes them slightly sub-optimal most of the time. This is part of why I doubt intelligent machines will eradicate the human race.
https://slatestarcodex.com/2020/05/12/studies-on-slack/

I like it when a distinguished but elderly scientist (Dr. Martin Rees) states that we’re going to evolve into genetically engineered cyborgs, some of whom will live on Mars.
https://youtu.be/A1dfjX0STEk

Ben Goertzel offers good challenges to the notion that suffering and death give meaning to human life.
https://www.youtube.com/watch?v=6LbGwcDOmiQ

The citizens of the U.S. and Canada would get richer if their countries fully merged. Even with a “free trade agreement,” there’s a lot of potential cross-border trade that isn’t happening, costing everyone money. A fully unified internal market would solve that.
“Borders and Growth” https://www.nber.org/papers/w9223.pdf
“Gravity with Gravitas” https://www.nber.org/papers/w8079.pdf
“National Borders Matter” https://online.fliphtml5.com/tcva/smhp/#p=2

Here’s an interesting list of everyday things that have improved for Americans since the 1990s.
https://www.gwern.net/Improvements

The process of innovation and invention is a team effort full of trial-and-error, failed experiments, and small modifications to existing ideas and things. It can also be slowed or quashed by something as mundane as government red tape.
http://www.rationaloptimist.com/blog/innovation-can-be-quashed/

The ACLU is suing “Clearview AI,” for violating the privacy rights of some Americans by compiling a searchable, massive trove of face photographs taken from publicly available internet sites.
https://www.aclu.org/press-releases/aclu-sues-clearview-ai

If manmade impermeable surfaces (e.g. – roads, roofs, parking lots, sidewalks) increase by 1%, then the frequency of floods grows by 3.3%. What fraction of today’s flooding is caused by this and not by global warming?
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL086480

Global warming will make snowstorms less frequent and less severe in the U.S.
https://www.usatoday.com/story/news/nation/2020/05/26/climate-change-reduce-big-winter-snowstorms-study/5258663002/

The cost of solar power has dropped faster than any credible person predicted, even ten years ago. This supports my prediction that the 2020s will be the decade when better, cheaper solar panels and grid storage batteries will make solar power cost-competitive with standard forms of energy, even without government subsidies.
https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/

A big problem with solar and wind power is intermittency. To compensate for their sudden swings in electrical output over the course of the day, the people in charge of the electric grids have to throttle other power plants up and down. Natural gas power plants are best suited for this, but quickly dialing them up and down still greatly reduces their efficiency, releasing more CO2 into the atmosphere than they otherwise would. (We REALLY need to invent better batteries for grid energy storage.)
https://www.forbes.com/sites/bradtempleton/2019/03/11/what-happens-when-we-put-renewables-on-the-grid-to-green-our-electric-cars-is-really-complicated/#53b195e57022

There are genetic differences between northern and southern Italians.
https://www.dailymail.co.uk/sciencetech/article-8348963/First-study-Italians-genetic-diversity-reveals-dates-19-000-years-ago.html

A graduate math student just solved the 50-year-old “Conway Knot Problem.”
https://www.quantamagazine.org/graduate-student-solves-decades-old-conway-knot-problem-20200519/

Just as the air gets thinner as you go up a mountain, it gets thicker as you go down into a mine.
https://www.saimm.co.za/Journal/v105n06p387.pdf

Here’s a video of 300 Amish men picking up a barn and moving it across a field with their bare hands. When robots become cheap and widespread, we’ll be able to use them to do things like this all the time.
https://www.dailymail.co.uk/news/article-8320953/Amazing-moment-300-Amish-men-lift-huge-barn-bare-hands-field.html

Finland’s big experiment with giving a UBI to unemployed people found that the money doesn’t make them any likelier to get jobs, but it makes them feel happier. (Who would have thought free money would do that?)
https://www.bloomberg.com/news/articles/2020-05-06/milestone-free-money-study-shows-happiness-grows-but-jobs-don-t

Internal U.S. State Department communiques show that diplomats were concerned about lax safety protocols at a Chinese animal disease lab in Wuhan. The lab had samples of diseases similar to COVID-19.
https://www.washingtonpost.com/opinions/2020/04/14/state-department-cables-warned-safety-issues-wuhan-lab-studying-bat-coronaviruses/

Is the COVID-19 pandemic SAVING some lives? The lockdown means less air pollution, which in turn means fewer people dying of respiratory distress. (Also, less car traffic means fewer road fatalities)
https://www.dailymail.co.uk/sciencetech/article-8180063/Coronavirus-lockdown-slashes-air-pollution-China-25-36-000-lives-month.html

The U.S. COVID-19 death toll has hit 100,000. Remember the White House press conference from two months ago when Trump’s advisors put forth that number, and how sobering it was? It’s strange that we’ve arrived there.
https://www.vox.com/science-and-health/2020/3/31/21202188/us-deaths-coronavirus-trump-white-house-presser-modeling-100000

In this interview from two months ago, Bill Gates predicted that that the number of active COVID-19 cases would peak in every part of the U.S. by late April. He was pretty accurate, though a handful of states didn’t peak until early May, and Arizona has still not peaked. Gates went on to predict that a month would have to pass after those peaks for states to start safely lifting their lockdowns, meaning that we’d start seeing a lot of that around late May (now). Again, he was right.
https://www.cnn.com/videos/business/2020/03/27/bill-gates-coronavirus-town-hall-shutdown-april-peak-sot-vpx.cnn/video/playlists/stories-worth-watching/
https://www.usatoday.com/story/money/2020/05/14/coronavirus-pandemic-covid-19-peak-dates-for-every-state/111695368/

Bill Gates now predicts:
-The world won’t return to its pre-COVID-19 state until a good vaccine has been invented and given to almost the whole human population.
-A vaccine won’t be invented until early 2021 or mid-2022.
-After that, distributing the vaccine to everyone will take months or years.
-By the end, the COVID-19 pandemic will have cost the world tens of trillions of dollars. (2019 global GDP was $85 trillion)
-The vaccine will probably become part of the standard vaccine schedule given to infants.
https://www.gatesnotes.com/Health/What-you-need-to-know-about-the-COVID-19-vaccine
https://www.seattletimes.com/business/at-a-time-when-leadership-is-rare-bill-gates-stands-tall-on-covid-19/

Though we’ll endure a sucky “new normal” for the next year or two, I disagree with predictions that the pandemic will permanently alter how people interact (e.g. – no more hugging, no more going to restaurants). Such predictions run contrary to human nature.
https://www.theatlantic.com/ideas/archive/2020/05/i-predict-your-predictions-are-wrong/611896/

What color is your power armor?

My recent analysis of the combat exoskeletons from Edge of Tomorrow made me realize that there are at least three types of humanoid or animal-like mechanical fighting machines frequently depicted in science fiction, and I’ve decided to explore their feasibility. I think they can be grouped into these categories:

  1. Power armor / exoskeleton
  2. Mechwarrior (“Mech”)
  3. Jaeger / Zord

Power armor / exoskeleton

Defining characteristics:

  • Can only accommodate one person.
  • Provides some combination of enhanced strength, endurance, speed, or carrying capacity.
  • Best thought of as a “suit.”
  • If worn, the person’s overall size is not so big that they can’t fit through standard-sized doorways or into vehicles designed for un-armored people.
  • The suited person remains narrow enough to fit between trees and duck under branches in wooded areas.
  • Depicted in Edge of Tomorrow, the Fallout, Starcraft, and Halo video games

Problems and disadvantages:

  • Limited power supply (can’t fit a big battery into a relatively small machine and expect it to last long)
  • Could limit mobility and agility so much that you’re better off not wearing it.
  • Potentially dangerous to the wearer and to comrades who are not wearing their own, protective suits. Risk of serious accidents rises if your strength is amplified and you have lots of heavy, unyielding metal strapped to your body.

Feasibility:

  • Mildly feasible.
  • Light exoskeleton that increases load-carrying capacity of infantrymen, or lets them carry heavier weapons than otherwise possible (like .50 caliber machine guns) could be valuable and practical someday.
  • Heavy, fully enclosed exoskeleton for short duration, close-combat missions might also be practical.
  • Best use might be in noncombat logistic roles, like picking up and moving heavy cargo around bases.
  • Discussed at length in my blog entry about Edge of Tomorrow.

Mechwarrior (“Mech”)

Defining characteristics:

  • Can accommodate one or two people.
  • Can’t fit through standard-sized doorways or into other vehicles except large cargo planes and maybe large cargo helicopters.
  • Similar size and firepower as a tank or attack helicopter.
  • Should be thought of as a military vehicle and not as a suit.
  • Primarily or exclusively designed to fight using guns, missiles, and other ranged weapons. Usually ill-suited for hand-to-hand combat.
  • In theory, can traverse rougher terrain than wheeled/tracked vehicles thanks to its legs.
  • Depicted in Return of the Jedi, the Mechwarrior and Titanfall video games
The “spider tank” from the Ghost in the Shell anime movie is a more realistic type of mech since it has more than two legs and a low center of gravity.

Problems and disadvantages:

  • Having legs instead of wheels or caterpillar tracks would be problematic.
    • Legs would propel the vehicle slower than wheels or caterpillar treads. The ride would also be much bumpier, which would be exhausting and potentially disorienting for crewmen. Combat performance would suffer if the crewmen were dizzy and beat-up by the time they arrived at the battle site.
    • Mobility advantage over wheeled and tracked vehicles is questionable since mechs would have higher ground pressure–all of their weight would be concentrated on two feet, whereas traditional armored vehicles spread out their weight over 6-8 large wheels or two, long caterpillar tracks. This means a mech would have worse problems sinking into the mud and getting stuck.
    • Having a humanoid or animal-like layout (i.e. – legs for sure, and possibly arms as well) would increase a fighting vehicle’s surface-area-to-volume-ratio compared to a traditional wheeled or tracked vehicle with the same size and firepower. A mech would thus need to devote more of its mass to armor to achieve the same, all-around ballistic protection as a tank. Increasing the armor would necessitate deleting other things to save weight (e.g. – reduce fuel, ammo, or main weapon size/power).
    • The powertrain would need to be heavier and more complicated. A conventional tank like a T-72 essentially has a big truck engine that is transversely mounted and spins a shaft connected to one wheel on either side of the vehicle. It’s a simple and compact layout. A layout designed to move two, multi-jointed legs would be much more mechanically complex, requiring multiple motors and many spinning shafts, meaning more weight and more moving parts that can fail.
  • Its width would prevent it from going down alleys or between closely-spaced trees. Human enemies could run to constricted areas like that for cover. The mech’s big selling point–that it can go places where trucks and tanks can’t–is eroded thanks to the tree problem.
  • Its tallness would impose many problems.
    • Forested areas become even more impassable since branches can block mechs and/or obscure their crewman’s view of targets at ground level. Power lines, some road lights, and bridges/overpasses also turn into obstacles. The mechs definitely can’t be used for peacekeeping or domestic policing if they’re going to be constantly snapping power lines and cutting off electricity to whole neighborhoods. High ground pressure might also damage roads by leaving footprint indentations.
    • The taller and wider a mech is, the bigger of a target it becomes, and the easier it is for enemies to shoot it from longer ranges.
    • Mech would have high centers of gravity that would introduce the risk of tip-overs. Even if falling over didn’t destroy a mech, it could do enough damage and injury to the vehicle and crewman, respectively, to knock them out of the fight.
    • The torque from shooting heavy weapons mounted high on the mechwarrior would tip it over.
  • Accidental injury problem would be worse than in power armor / exoskeletons. For example, if a mech fell over by accident, it could crush friendly 20 infantrymen.
A “walking excavator” provides the design basis for the most practical type of combat mech

Feasibility:

  • Probably infeasible. There’s a reason why there are tens of thousands of advanced tanks in global military service, but not even one, basic mech.
  • It would be better to use aircraft and infantry to patrol and fight in areas where the terrain is too rough to bring in tanks and wheeled vehicles. Probably not worth it to build mechs just for specialty engagements in those places. Mechs might provide an advantage there, but would be inferior to traditional military vehicles in all other types of terrain. Not a flexible asset.
  • Building a useful mech is a much bigger technical challenge than making powered exoskeletons.
  • If we decided to build combat mechs anyway:
    • Designing them with four or more legs would make them safer, more stable, less likely to get stuck in the mud (ground pressure problem), and would offer a smoother ride than mechs with two legs. Problematically, a human pilot wouldn’t be able to intuitively control a machine that had more than two legs. Like in a car, the pilot would probably use a steering wheel and pedals to input direction and speed commands to the mech, and the mech’s computer would figure out exactly how to reposition the 4+ legs to achieve that. However, this disconnect between inputs and fine movements of the vehicle could lead to problems if the computer stepped on, say, a land mine, friendly infantryman, or an open sewer hole that the human pilot could see and wanted to avoid.
    • Making it as low to the ground as possible, with its volume distributed horizontally as opposed to vertically, would make it more stable and reduce its target profile.
    • Spider-like or beetle-like mech makes more sense than human-like mech.
    • The number of legs would present a tradeoff between vehicle stability and smoothness of ride vs. fuel efficiency and mechanical complexity/breakdown rate. Unsure what the optimum number of legs would be, but “two legs bad” for sure.
    • Would probably need built-in wheels for easy transport over roads and flatter ground. Remember, it won’t be climbing jagged hills or stepping over big logs in the forest all the time. This would also be easier on the crewmen.
    • The most practical design might resemble a “walking excavator,” but with armor and heavy weapons comparable to what is found on APCs. Couldn’t have the same firepower, speed, or protection as a main battle tank. (Videos showing walking excavators in action: 1) https://youtu.be/Hn1aZQFhC40 2) https://youtu.be/j87k71kOBis)
    • Would have a 360 degree rotating gun turret, like almost all armored vehicles. Wouldn’t need as big of a cannon since heavily-armored tanks wouldn’t be able to get into the rugged terrain areas where mechs would operate (20mm – 40mm cannon would be fine against other mechs, infantry, structures, and entrenched positions).
    • Might make sense to have heavy-lift helicopters transport mechs to their battle/patrol zones (mountain top, forest clearing, sand dune area).
    • A fully automated mech that lacked human crewmen wouldn’t suffer from many of the problems listed in this section, like disorientation and exhaustion from a bumpy ride. Small, unmanned turret would reduce center of gravity as well.

Jaeger / Zord

Defining characteristics:

  • Huge. At least 100 ft tall. Size and firepower are comparable to warships (modern destroyer or cruiser).
  • Strong enough to win fights with big groups of armored vehicles and planes attacking it at once.
  • Best thought of as a “one-man army.”
  • Can go anywhere since its feet are so big it can just step on and crush trees and walk up hills like they were steps. Can also wade through shallow bodies of water.
  • Has standoff weapons like missiles and cannons but is also designed for hand-to-hand combat and striking with oversize, handheld weapons like giant swords.
  • Depicted in Pacific Rim, several Godzilla movies, the Power Rangers TV show and movies.

Problems and disadvantages:

  • The “square-cube law,” along with limitations on the strength-to-weight ratios of physical materials, effectively prohibits the construction of machines this big that can also rapidly walk around and violently swing their arms (it also prohibits the existence of animals in the same size range).
  • Massive investment of money and resources into a single weapon that can only be in one place, at one time would probably be better spent on many smaller weapons (e.g. – tanks, fighter planes, mobile missile launchers) that can be spread out to patrol and fight enemies across large areas, and concentrated in one place when necessary to fight against a strong enemy.
  • Falls and tip-overs would be fatal to human pilots. Accidentally falling onto buildings or groups of friendly troops could kill hundreds of people at once.
  • Shares many of the same problems mech have, but to a worse degree.
  • They would be gigantic targets that enemies could see and shoot at from dozens of miles away, or bomb from high altitudes. They wouldn’t be able to hide themselves except in cities among skyscrapers, in canyons, or perhaps by diving into deep bodies of water. In every other environment, they would be impossible to camouflage.
  • Explored in my End of Evangelion review.

Feasibility:

  • Infeasible for many scientific and engineering reasons.
  • We would need Star Trek levels of technology (radically stronger and lighter materials, miniaturized fusion reactors, and cheap ways to build both) to make the sorts of Jaegers and Zords shown in the movies. With current technology we might be able to build Jaegers and Zords that were extremely slow, fragile, expensive, and of almost no military value. They would be missile- and gun platforms only, and would break themselves if they punched or kicked anything hard.
  • Even if the Star Trek technology existed, it’s doubtful anyone would make a Jaeger/Zord since it’s better to create a land force made up of many small, expendable units than to invest everything in one giant, all-important fighting machine. A single point of failure is really bad. A force made of many units is also more flexible since they can be spread out across a large area.

Additional thoughts on power armor / exoskeletons

  • The most realistic of the three types of fighting machines.
  • A minimalist exoskeleton with attachment points for big weapons like .50 cal machine guns, grenade launchers, and recoilless missile launchers would let infantry squads bring heavier weapons on patrols into rugged terrain areas. Squad members wearing the exoskeletons could fill some of the firepower niche that mechs are intended to fill.
  • Instead of all the troops wearing those exoskeletons with big weapons, it might be worn by every fifth or tenth man, specially trained for that equipment. Most of the troops would have normal weapons and would have no exoskeletons or lighter exoskeletons just designed to increase their load carrying capacity and to ease the physical strain of long marches.
  • Might work like this: Squad leader keeps the .50 cal exo-soldier in the back of the line unless needed. If so, he calls him up and deploys him carefully.
  • My thinking is guided by assumptions about existing science and tech. Exoskeletons would be totally plausible with Star Trek technology (e.g. – super light, super strong metal; flexible bulletproof body panels, personal fusion reactors).
  • Avatar final battle would actually be ideal scenario to use heavy weapon exo-soldiers. Forest environment blocked air support and wheeled vehicles (the tree cover would have also made it impractical to deploy mechs). Idea was to use helicopters to insert troops, win, and then recover them after a few hours, so no risk of batteries dying. Enemies were large, so abnormally large weapons needed.
  • Unclear if Edge of Tomorrow beach landing was well-suited to exo-soldiers. Mimics were very fast, but not actually that robust. Regular troops with normal weapons would have been better since they were faster and more agile. Also could have landed greater number of regular troops with same number of transport craft.

Interesting articles, April 2020

The V-22’s (left) engines AND rotors tilt upward to hover, but the V-280’s (right) engines never move, so ONLY its rotors tilt upward to hover.

One of Google’s AIs can now generate songs, complete with human vocals. It doesn’t sound bad.
https://openai.com/blog/jukebox/

In another blow to globalism, Argentina signals it might drop out of MERCOSUR.
https://en.mercopress.com/2020/04/29/uruguay-and-argentina-presidents-discuss-the-future-of-mercosur

Kim Jong-un’s absence from public view has some speculating that he is gravely ill or even dead.
https://apnews.com/92808af0efae97b32464bb2e2e9fcab5

Ethiopia’s construction of a major dam on the Nile River is making downstream Sudan and Egypt nervous about their future water supplies. The region is already water-scarce and rapidly growing in population.
https://www.theguardian.com/global-development/2020/apr/23/itll-cause-a-water-war-divisions-run-deep-as-filling-of-nile-dam-nears

The Hubble Telescope is 30 and still working!
https://www.bbc.com/news/science-environment-52106420

Interesting facts about the Space Shuttle:
-It was originally supposed to be a fully reusable, two-stage craft. That design would have been more expensive but probably better.
-The notion that the Shuttle would be a cheaper way to launch cargo into orbit that traditional rockets was never supported by data. Politicians just made it up to sell the idea to the public.
-The Soviet “Buran” craft was more advanced than the U.S. Shuttle, and fixed some of the latter’s known flaws.
https://gizmodo.com/the-space-shuttle-was-a-beautiful-but-terrible-idea-1842732042

The U.S. Navy has officially released copies of the famous UFO videos that were leaked to the public in December 2017. The Navy also said it didn’t know what the UFOs were.
https://www.thedrive.com/the-war-zone/33179/navy-officially-releases-infamous-ufo-videos

Interesting details about the V-22:
-“Many of the challenges in developing and operating the V-22 are the result of designing a fairly large platform to operate within the confines of US Marine Corps amphibious ships. This caused several compromises, such as a smaller proprotor diameter, which increases the download and reduces the hover efficiency, and a shorter wing, which reduces the amount of lift and range.”
-“These engineering lessons and the lack of shipboard size constraints enabled Bell to reduce the downwash from the rotors, design the rotors to tilt from horizontal to vertical without rotating the engines, and improve the reliability and availability of components. The V-22’s downwash, or high velocity air from the two tilting proprotors producing 22,680 kg of thrust to keep the aircraft aloft, can damage objects or injure people below. It also means the Osprey must burn more fuel to hover.”
-“In addition, the V-22 required a rear-ramp exit to avoid hot-engine exhaust blasting onto ship decks and grassy landing zones. As the V-280’s engines do not rotate, this solves the hot engine exhaust issue, which can start brush fires, and means troops can ingress and egress via side doors.”
https://www.janes.com/article/95609/forty-years-on-from-the-v-22-s-conception-bell-applies-engineering-lessons-learned-to-the-v-280

The U.S. Air Force is going to 3D scan a B-1 bomber to make a highly detailed computer simulation of it to identify faults and components that are wearing out. Today, it’s only cost-effective to do this for large aircraft, but in the future, we’ll have computer simulations for every type of manufactured object and will use them to optimize designs.
https://www.thedrive.com/the-war-zone/33151/air-force-sends-full-b-1b-airframe-from-boneyard-to-kansas-to-create-its-digital-twin

Russia has cancelled the construction of several advanced warships due to lack of money.
https://nationalinterest.org/blog/buzz/russian-navy-just-cancelled-its-biggest-warships-146776

The realities of submarine combat and of how torpedoes work are totally different from what you see in movies. Interestingly, many torpedoes stay connected to the subs that fired them by way of long wires that rapidly unspool as the torpedoes move forward.
https://www.thedrive.com/the-war-zone/33018/modern-submarine-torpedo-attacks-are-nothing-like-what-you-see-in-the-movies

An interesting video about the downsides of upgrading tanks. Adding weight in the form of applique armor or a bigger gun can push the tank’s engine and suspension past their design limits, increasing the odds of a breakdown. Drilling holes through tank armor to run new wires to create mounting points for gadgets can also make the armor much weaker.
https://www.youtube.com/watch?v=PvSpMtulunU

Sodium- and mercury-based streetlights are going extinct, meaning someday, kids will watch old movies and wonder why things looked yellow-tinted at night.
https://nofilmschool.com/2014/02/why-hollywood-will-never-look-the-same-again-on-film-leds-in-la-ny

An incredible-looking machine has been built in Japan to study antimatter.
https://www.bbc.com/news/science-environment-52297058

Could we insure against species going permanently extinct by collecting sperm and egg samples from endangered species and freezing them for future use? The samples could stay good for hundreds of years.
https://www.theguardian.com/environment/2020/apr/22/a-tiny-scientific-marvel-olaf-the-ivf-toad-brings-hope-to-at-risk-species-aoe

If more farmers adopted today’s high-yield agriculture methods, we could grow the same amount of food with half the amount of cropland.
https://reason.com/2020/04/17/its-possible-to-cut-cropland-use-in-half-and-produce-the-same-amount-of-food-says-new-study/

Cut off from most international trade and able to use artificially cheap domestic labor, the Soviets developed advanced ways of growing citrus trees in cold climates. One method involved planting the trees in deep trenches.
https://www.lowtechmagazine.com/2020/04/fruit-trenches-cultivating-subtropical-plants-in-freezing-temperatures.html

The University of Washington’s disease model has been very accurate predicting the course of the COVID-19 epidemic in the U.S. A snapshot from March 30 predicted that U.S. deaths would peak on April 15 at 2,271. It did peak on that day, but at 2,693. The model shows that the virus’ first wave will be almost done by June 1, and will claim 72,400 lives.
https://www.dailymail.co.uk/news/article-8168661/Data-predicts-2-271-Americans-die-coronavirus-April-15.html
https://covid19.healthdata.org/united-states-of-america

Almost half of the French aircraft carrier Charles de Gaulle’s crew got infected with COVID-19. The ship’s crowded conditions proved ideal for disease transmission.
https://apnews.com/fd1996b64f4cc3aeaa92b352bb7f5cce

In mid-March, Elon Musk predicted that the coronavirus pandemic would end soon, and that the U.S. would have “close to zero” new cases of the disease by the end of April. The CDC counted 26,512 new cases on April 29 alone.
https://www.npr.org/2020/04/29/848093173/teslas-elon-musk-rants-again-calls-lockdowns-forcible-imprisonment-and-fascist

For the first time on record, and probably for the first time since the era of Mao’s Mickey Mouse Economics, the Chinese economy shrank. The pandemic was the obvious cause.
https://www.bbc.com/news/business-52319936