Roundup of interesting internet articles, October 2017 edition

  1. The U.S. could have beaten the U.S.S.R. into space.
    https://www.popsci.com/interservice-rivalry-that-delayed-americas-first-satellite-launch?ePZmFpuivxk1tpDE.01
  2. Eisenhower bears part of the blame, since newly released documents show that U.S. intelligence had given him good estimates of when Sputnik would be launched, but he grossly underestimated its propaganda value. Could he have done more to speed up the launch of America’s first satellite?
    https://www.nytimes.com/2017/10/06/science/sputnik-launch-cia.html
  3. Reading this makes me think that humans will never leave Earth in large numbers unless we have Star Trek levels of technology (if such a thing is even possible).
    https://qz.com/1105031/should-humans-colonize-mars-or-the-moon-a-scientific-investigation/
  4. However, there’s nothing stopping us from getting off this berg in token numbers for, say, a Mars mission. But we’ll probably need to simulate gravity during the trip or else the astronauts will develop all kinds of health problems. (Would a mere 25% of Earth gravity do the trick?)
    http://www.theage.com.au/good-weekend/astronaut-scott-kelly-on-the-devastating-effects-of-a-year-in-space-20170922-gyn9iw.html
  5. Earth has five LaGrange Points, two of which would be useful parking places for satellites.
    https://www.space.com/30302-lagrange-points.html#sthash.rNZf8a0K.gbpl
  6. The LaGrange Points might also be good places to search for alien spy probes. That and other creative suggestions about how to find intelligent aliens are in the article.
    http://nautil.us/blog/why-well-have-evidence-of-aliensif-they-existby-2035
  7. What would a planet that was MORE hospitable to organic life than Earth be like?
    https://youtu.be/xrYjXOX9NLg
  8. The War of 1812 dispelled the notion that citizen militias and civilian insta-generals were adequate for American self-defense (idealism was very strong in the early days). A professional, standing military was necessary. Had more pragmatic men been in charge in the years before 1812, Canada might be part of the U.S. today.
    http://nationalinterest.org/blog/the-buzz/5-times-the-us-navy-was-sunk-battle-22582
  9. Several countries are developing “Guided bullets” that have some ability to steer themselves to home in on targets. For now, the emphasis is on using them to destroy enemy land vehicles and drones at long ranges, but they’ll eventually find anti-personnel uses.
    http://www.janes.com/article/75087/orbital-atk-progresses-new-medium-calibre-munition-development
  10. Would Americans be willing to sacrifice Facebook access to save Taiwan?
    http://blogs.harvard.edu/philg/2017/10/18/the-next-war-at-sea-will-actually-be-entirely-under-the-sea/
  11. While the U.S. military has practically become a byword for waste and bureaucracy, and the Ford-class aircraft carrier project has been singled out for cost and timeline overruns, one analysis claims the ships actually represent an optimal balance of size, capability, survivability, and cost.
    http://nationalinterest.org/blog/the-buzz/study-bigger-aircraft-carriers-are-better-22756
  12. The U.S. Army has finally bought Israel’s battle-proven “TROPHY” active protection system for installation on its tanks. This should have been done years ago, but was held up by the Pentagon’s insistence on developing an American-made system that has gotten stuck in the classic rut of spiraling costs and overly ambitious capabilities requirements.
    http://www.janes.com/article/74744/ausa-2017-us-army-buys-trophy-active-protection-system-for-abrams-tank-brigade
  13. The Humvee might be more survivable than its (Bentley-priced) replacement because it has fewer electronic components, making it less vulnerable to EMP weapons.
    https://www.nextbigfuture.com/2017/10/humvee-has-no-electronics-for-emp-to-damage.html
  14. An improved typhoid vaccine has been created
    http://www.bbc.com/news/health-41724996
  15. An improved shingles vaccine has received a CDC recommendation.
    https://www.nytimes.com/2017/10/25/health/cdc-shingles-vaccine.html
  16. The FDA approved two gene therapies, one to treat blindness (http://www.npr.org/sections/health-shots/2017/10/12/557183740/fda-panel-endorses-gene-therapy-for-a-form-of-childhood-blindness) and the other to treat blood cancer. (https://www.nytimes.com/2017/10/18/health/immunotherapy-cancer-kite.html)
  17. Contaminated cell lines might have corrupted data in tens of thousands of medical studies. Most futurists like to speculate about AI scientists discovering new things, but I think there would be tremendous value to having them re-examine and in many cases redo experiments their human counterparts did long ago.
    http://blogs.sciencemag.org/pipeline/archives/2017/10/20/bad-cells-so-many-bad-cells
  18. Chinese scientists have used CRISPR to make genetically engineered pigs that have less fat. This could actually reduce animal suffering and save farmers money since pigs that have less fat are, ironically, less likely to freeze to death in cold weather. FDA approval for sale in the U.S. is unlikely because Americans watch too many horror movies about mutant animals.
    http://www.npr.org/sections/thesalt/2017/10/23/559060166/crispr-bacon-chinese-scientists-create-genetically-modified-low-fat-pigs 
  19. Organic farming has very few, if any, environmental advantages over conventional farming.
    https://ourworldindata.org/is-organic-agriculture-better-for-the-environment
  20. The Placebo Effect and the related Nocebo Effect are both stronger when test subjects are made to believe the sham substances they’re being exposed to cost a lot of money.
    http://blogs.sciencemag.org/pipeline/archives/2017/10/06/expensive-shams-are-the-way-to-go-apparently
  21. California leads the nation! Flame retardant chemicals that the California state government effectively made mandatory for the whole U.S. in 1975 cause a slew of health problems.
    https://qz.com/1098161/the-us-government-is-finally-acknowledging-the-flame-retardants-in-your-furniture-and-baby-products-are-not-just-ineffective-but-also-dangerous/
  22. To stop accidental hot car deaths, Congress might require carmakers to build features into their vehicles that warn drivers if they’ve left their kids inside. This blog post and its links describe three possible engineering solutions, the simplest of which is an algorithm that monitors door opening and closing sequence.
    http://blogs.harvard.edu/philg/2017/10/26/congress-considering-ordering-cars-to-add-about-1-iq-point-my-2003-idea/
  23. 350 kw charging stations that can recharge electric cars in 10-15 minutes are coming.
    https://www.nytimes.com/2017/10/05/automobiles/wheels/electric-cars-charging.html
  24. Cars windshields and roofs might also someday be made of single pieces of Gorilla Glass, giving people in the front seats completely unobstructed views. More generally speaking, all kinds of objects in the future will look unchanged from today, but will have seemingly magic properties thanks to advanced materials and to sensors and computers being embedded in them.
    https://www.economist.com/news/science-and-technology/21730128-soon-gorilla-glass-and-its-descendants-will-be-everywhere-one-worlds
  25. A small hint of the coming advances in materials science.
    http://blogs.sciencemag.org/pipeline/archives/2017/10/11/darn-near-flatland
  26. Engineering improvements are in the cards as well. A supercomputer tasked with optimizing the designs of airplane wings created wings with organic-looking arrangements of beams and supports. What kinds of redesigns will machines make to everyday objects, and what kinds of obvious opportunities for improved design efficiency have we missed so far?
    http://www.nature.com/news/supercomputer-redesign-of-aeroplane-wing-mirrors-bird-anatomy-1.22759
  27. Truck tailgating improves the fuel efficiency of the following vehicle AND the lead vehicle. When autonomous trucks become common, I’m sure they’ll use “platooning” all the time.
    https://www.washingtonpost.com/local/trafficandcommuting/are-those-80000-pound-trucks-tailgating-each-other-soon-it-may-be-perfectly-normal–and-safe/2017/10/22/fbbbb0fa-a2de-11e7-b14f-f41773cd5a14_story.html
  28. ‘At very small scales, fixed-wing and multirotor designs become less efficient, and insect-like drones with flapping wings may make more sense. Tiny drones could be used for virtual tourism, letting remote users “fly” around with the aid of virtual-reality goggles. In short, today’s drone designs barely scratch the surface.’
    https://www.economist.com/news/technology-quarterly/21723004-pioneer-evolutionary-robotics-borrows-drone-designs-nature-dario-floreano
  29. The “Wave Glider” unmanned drone ship harnesses solar energy and wave power to generate electricity for itself, and could stay at sea indefinitely. (I’m sure mechanical breakdowns impose a limit on endurance.) http://warisboring.com/this-weird-drone-feeds-on-hurricanes/
  30. If everyone will have a robot butler in the future, and if the butlers will be able to download any knowledge or skill, then does that mean they’ll be able to fix anything you own? Wouldn’t they also know how to do preventative maintenance and inspections on all your stuff? Are we headed for a future where things almost never break?
    http://www.baltimoresun.com/news/maryland/baltimore-city/bs-md-fixit-20171021-story.html
  31. A new AI “was able to solve reCAPTCHAs at an accuracy rate of 66.6% …, BotDetect at 64.4%, Yahoo at 57.4% and PayPal at 57.1%.” That’s not as good as the 81%+ pass rate typical of humans, but it’s still high enough to render CAPTCHAs obsolete as a means of differentiating between humans and machines. I bet the AIs have entered the “human range” of skill in this narrow task, and can solve CAPTCHAs as well as human children, humans with poor eyesight, and humans with low intelligence.
    http://www.npr.org/sections/thetwo-way/2017/10/26/560082659/ai-model-fundamentally-cracks-captchas-scientists-say
  32. …And here’s a domain where AIs have achieved super-superhuman levels of performance: AlphaGo defeated all the world’s best human Go players last year, and AlphaGo Zero just defeated AlphaGo in a 100-game tournament, with no losses.
    https://www.technologyreview.com/s/609141/alphago-zero-shows-machines-can-become-superhuman-without-any-help/
  33. Stephen Wolfram gives an impressive talk about the future of AI (you can just feel the genius oozing out of him). It gets really interesting towards the end when he talks about how most “work” we do in rich countries today would seem like the equivalent of playing video games to people from antiquity. Will “work” in the future look like video gaming today?
    https://www.level9news.com/wolfram-discussing-ai-singularity/
  34. A great roundup of quotes from very smart people (including Thomas Edison!) who didn’t think airplanes would work. Makes you wonder about today’s experts who “confidently” predict that machines will never achieve human intelligence, or will only do so hundreds of years from now.
    https://www.xaprb.com/blog/flight-is-impossible/
  35. More on that.
    https://intelligence.org/2017/10/13/fire-alarm/
  36. And a good counterpoint that throws cold water on the AI hype.
    https://www.technologyreview.com/s/609048/the-seven-deadly-sins-of-ai-predictions/
  37. I never thought of this, but yes, magic tricks won’t impress robots since they’ll be able to use their advanced visioning sensors to see what’s actually happening.
    http://blogs.harvard.edu/philg/2017/10/04/beat-three-card-monte-with-google-glass-and-remotely-located-human-or-artificial-expert/
  38. The Quantified Earth
    http://www.popularmechanics.com/science/environment/news/a28708/earthquakes-fiber-optic-cables/
  39. Long gone are the days when a brilliant person could make a profound scientific discovery working alone in his lab. Science isn’t “over,” but we’ve certainly picked all the low-hanging fruits, and new discoveries can only be made through massive investments of human talent and money. Makes you wonder whether how well Einstein could distinguish himself today.
    https://qz.com/1106745/were-running-out-of-big-ideas/
  40. Blade Runner 2049‘s CGI Rachael looked vastly better than Rogue One‘s CGI Tarkin and Leia, possibly because the special effects team spent a whole year working on Rachael.
    https://io9.gizmodo.com/the-secrets-behind-blade-runner-2049s-most-surprising-s-1819675592
  41. Fascinating questions to ponder: How many stable chemicals are possible, how many of those can useful things for us, and what percentage of the useful chemicals have we already discovered?
    http://blogs.sciencemag.org/pipeline/archives/2017/10/10/how-many-natural-products-are-being-found-and-how-many-are-there
  42. Japan’s population has been shrinking since 2010, and the trend won’t stop for the foreseeable future. The good news? More space per person.
    https://qz.com/1112368/abandoned-land-in-japan-will-be-the-size-of-austria-by-2040/

Random idea: “Smart rain barrels”

My installed rain barrel

My local government has a program to reimburse 100% of the cost of residential rain barrels, and since it’s hard for me to ever argue with “free,” I signed up. The only requirements are that each participant attend a lecture about rain barrels and related subjects (which I did), and that each participant also show a government inspector that they’ve properly installed your rain barrel (which I haven’t yet).

The presentation was given by environmental people from local agencies and nonprofits, and they explained that the primary benefit of rain barrels was to reduce storm water runoff and the attendant problems with flash flooding and fish kills. Roads and driveways are covered in motor oil and other chemicals, and lawns and farms are covered in pesticides and fertilizers. When it rains heavily, these chemicals are washed into waterways all at once, which kills aquatic life and also makes the waterways unsafe for humans for days.

A rain barrel helps mitigate this problem by storing the water that falls onto your house’s roof. You put the barrel next to your downspout and do some simple cutting and crimping of the metal downspout to connect it to a hole in the top of the barrel. During storms, the rain that falls on your roof flows into the rain barrel and stays there, reducing local water runoff by some minuscule amount. Presumably, if every house and building had a rain barrel, there would be a meaningful reduction in flooding and fish kills (the presenters unfortunately had no estimates, so I made some of my own below).

Before the presentation ended, the problem with the rain barrel concept became clear to me: they require routine maintenance. It’s up to homeowners to keep track of how full their rain barrels are and to periodically drain them (productive uses like washing cars or watering gardens were suggested), or else they’ll fill to the brim after a few storms and thereafter overflow each time it rains, defeating their purpose. Homeowners also have to check on them to make sure they aren’t clogged up with dead leaves or full of mosquito larvae.

Call me a cynic, but I think even this small amount of diligence is too much for most people, and rain barrels will function best if they automatically empty themselves of water. The simplest (and probably best) solution might be to screw a cap with a tiny hole in the middle over the rain barrel’s faucet. The hole would only allow a few drops of water to leak through it per minute, which would be a much slower flow rate than the unobstructed downspout. The rain barrel would fill during storms and then slowly discharge its load over several days. Keep in mind that it’s not the amount of rain that causes the problem, but the suddenness of the rain, so discharging all the water in your rain barrel won’t contribute to flooding or fish kills if it happens very gradually. Once-yearly maintenance might consist of cleaning the dead leaves out of the barrel and installing a new cap, which might cost $2.00 at Home Depot. That sounds doable for average people.

I’m going to call this idea the “Russian engineering solution.”

The spigot at the base of my rain barrel

In lieu of making a cap, I’ve screwed a 4′ long extension hose into the spigot, and pointed the hose away from my house to prevent discharged water from flowing towards its foundations. Last Saturday night, my area got its first major rainfall since I installed the barrel, and to my surprise, it filled to the brim in a few hours (FYI, 700 square feet of roof feed into the downspout that is connected to the rain barrel). I opened the spigot and emptied out the tank on Sunday. However, it didn’t rain for the rest of that day or the next, and it occurred to me that the rain barrel’s utility as a storm water runoff and flood control device would be optimized if its discharges took rainfall forecasts into account and were timed to occur when the ground was as dry as possible.

In other words, because it rained on Saturday night, the ground was still soaked on Sunday, its absorbency was reduced, and the water I discharged from my barrel that day might have added to the runoff problem. It would have been better if I had instead drained the barrel on Monday since the ground would have been more absorbent thanks to the extra day of drying out, but I didn’t know that since I didn’t check the weather forecast.

My 55 gallon rain barrel filled almost to the brim after just one night of moderate rain.

Checking weather forecasts to time the barrel discharges requires unrealistic diligence from people, so automation would be necessary. And if we’re designing a truly “smart” rain barrel, why not try to full optimize it by programming it to consider all pertinent variables? This includes:

  • The amount of water in the barrel (easily done with a float)
  • Absorbency of the soil (estimated based on recent rainfall and barrel discharges)
  • Rainfall forecast for the next 72 hours (including amount and timing of rainfalls; would require wireless access to an internet weather service)
  • Conversion factor that uses the rainfall forecast to predict how much new water will flow into the barrel (the barrel could formulate its own conversion factor by comparing past rainfall events with corresponding increases to its own load)

And of course, the smart rain barrel would need internal features that would let it discharge itself without human help, and I think copying the tried-and-true toilet tank setup would be fine. A chain could connect the float to some type of simple machine, and the float’s rise and fall along with the water level would apply tension to the chain, which the machine would somehow store as potential energy (a mousetrap or a revolver’s hammer give clues as to how this can be done). When signaled by the smart rain barrel’s computer, the machine would use that stored potential energy to mechanically lift the “toilet flapper” at the bottom of the barrel, letting the water flow out.

I’m going to call this the “American engineering solution.”

Ha ha! So which do we prefer?

  • Russian engineering solution: Simple, cheap, non-optimal but good enough
  • American engineering solution: Complex, expensive, optimal

Call me unpatriotic, but I’m inclined towards the former. Glory to Russia!

And lastly, how much would rain barrels of either sort help mitigate storm water runoff and flash flooding? It’s impossible to say for sure, but this should be the starting point of any estimate:

‘In the United States alone, pavements and other impervious surfaces cover more than 43,000 square miles—an area nearly the size of Ohio—according to research published in the 15 June 2004 issue of Eos, the newsletter of the American Geophysical Union. Bruce Ferguson, director of the University of Georgia School of Environmental Design and author of the 2005 book Porous Pavements, says that a quarter of a million U.S. acres are either paved or repaved every year. Impervious surfaces can be concrete or asphalt, they can be roofs or parking lots, but they all have at least one thing in common—water runs off of them, not through them. And with that runoff comes a host of problems.

…According to the nonprofit Center for Watershed Protection, as much as 65% of the total impervious cover over America’s landscape consists of streets, parking lots, and driveways—what center staff refer to as “habitat for cars.”’ SOURCE

That means in the U.S., 35% of impervious surfaces are roofs of buildings or houses. If we make the very optimistic assumptions that 1) every roofed structure in the country had a smart rain barrel system, 2) the gutters and downspouts of each structure shunted 100% of the rain falling on their roofs to the barrels, and 3) the barrels were big enough to never overfill except during extreme instances like hurricanes, then the smart rain barrels would presumably reduce the runoff problem by 35%, which is nothing to sneeze at.

Of course, all of that assumes 100% participation rates and 100% efficiency rates, neither of which is realistic unless we’re thinking about the distant future, when humanity is much better off and has worked its way very far down the “Global Problems List.”

More realistic assumptions would set at everything at 50%: 50% of structures have rain barrels, the average rain barrel collects 50% of the rain that falls on the roof (that’s true of my own setup), the average rain barrel doesn’t overfill during 50% of rain events. In that case, the storm water runoff reduction is only 4.375%. [Frownie face.]

Well…I still got the damn thing for free!!!

 

Review: “Prometheus”

I thought the movie Prometheus was awful, and rather than waste my time ranting about all the things I hated, I’ll just say I agree with the critics who collectively bashed the confused and scientifically flawed storyline, shallow and unlikable characters, and inexplicable/unrealistically stupid behavior of the characters. I love the first three Alien films, but everything since has been disastrous. Enough said.

Instead of spending any time writing about the flawed plot (IMDB has a summary here: http://www.imdb.com/title/tt1446714/synopsis) , I’ll jump straight to an analysis of the vision of the future depicted in the film, which is set in 2093.

We will have proof that humans evolved from or were engineered by aliens. Prometheus is premised on the notion that ancient aliens seeded the Earth with life and repeatedly returned to direct the genetic and cultural evolution of humans. The theory that intelligent aliens influenced the rise of the human species is debunked by the fossil record, by comparative DNA analyses of humans and other hominids, and by human biochemistry. Together they prove we are indigenous to Earth and that we slowly evolved from simpler species. By 2093, we will not have “new evidence” that contradicts this story of our origins, though there will probably still be many uneducated and/or mentally ill people who believe in this and other conspiracy theories. It is at least slightly plausible that life began on Earth billions of years ago thanks to panspermia (i.e. – an asteroid containing simple organic matter fell to Earth), but I don’t see how we could ever prove the hypothesis since time has destroyed any evidence that may have existed.

Some robots will be indistinguishable from humans. One of the main characters is “David,” an artificially intelligent robot who looks and acts like a human. Since David is modeled after humans, he is a special type of robot called an “android,” and note the literal translation of the word from Greek is “man-like” (andro-oid). I think androids like David will exist by 2093, and they will be capable of an impressive range of behaviors and functions that will make them seem very human-like. In fact, they’ll be so refined that we might not be able to tell them apart from humans at all, or only be able to do so on rare occasions (ex – some of their responses to questions might not make sense). Whether they will be truly conscious and creative like humans is a different matter.

Left: A human crew member.
Right: David the android.

The hyper-realistic sculptures made by artists like Ron Mueck, and advanced animatronics like the Garner Holt Productions Abraham Lincoln convince me that we could build robot bodies today that look 95% the same as real humans. Eeking out that last 5% to cross the Uncanny Valley should be easy to accomplish long before 2093. The much harder part is going to be endowing the machines with intelligence, with the ability to walk and stay balanced on two feet, and with other forms of physical deftness and coordination that will allow them to safely and efficiently work alongside humans and to do so without appearing “mechanical” in their movements.

Sculpture by Ron Mueck

Machines will do surgery on people, unassisted. There’s a gruesome and silly scene in Prometheus where the female main character realizes she is pregnant with a rapidly growing alien-human hybrid. She runs into the space ship’s infirmary, lies down in a coffin-sized surgery pod, and orders the machine to surgically remove the fetus. Several robotic arms bearing laser scalpels and claws do it in about a minute. I think surgery will be completely automated by 2093, along with all or almost all other types of jobs. Replacing high-paid human doctors with robot doctors that work for free will make healthcare dramatically cheaper and easier to access (with positive effects on human life expectancy and quality of life), though mass unemployment will also reduce the amount of money people have to pay for things like healthcare.

There will be space ships that can travel faster than the speed of light. The Prometheus space ship is capable of faster than light space travel, and the movie’s events take place in a different star system. Our current understanding of physics informs us that there is no way to exceed the speed of light, and propelling something as big as the Prometheus to just 10% of that speed would require impractically large amounts of energy. While mass figures for the fictional ship are unavailable, let’s assume it weighed about as much as the Space Shuttle, which was 2,000,000 kg. This kinetic energy calculator indicates it would require 9 x 10^20 Joules of energy to accelerate it to 10% of the light speed (30,000,000 meters/second).  That’s as much energy as the entire United States generates in nine years.

While science is by nature always open to revision, I think it’s a bad idea to base one’s vision of the future on assumptions that well-tested pillars of science like the Theory of Relativity will just go away. That said, I don’t think faster than light space travel is likely to exist in 2093–or perhaps ever–so we’ll still be confined to our solar system then.

FWIW, the space ships flying around our solar system by that year will be considerably larger and more advanced than what we have now, and it’s likely that space ships of similar size and technology (sans light speed drives) as the Prometheus will be plying interplanetary space.

There will be instantaneous gene-sequencing machines. In Prometheus, the humans find a severed alien head inside a wrecked alien structure, and they bring it back to their space ship for examination. The alien belongs to an advanced species nicknamed “The Engineers,” and the head’s features are very human-like. As part of the examination, the humans take a DNA sample from the head and put it in a gene sequencing machine, which determines it shares 99% of its genome with humans. The cost of sequencing a full human genome has plummeted at a rate exceeding Moore’s Law, and well before 2093, the service will become trivially cheap (e.g. – the same price as routine blood tests or vaccinations) and will take a few hours.

FYI, today it costs less than $5,000 to sequence a human genome, and the machines can do the work in about 24 hours. But since we can only decipher a minuscule fraction of the genetic information, it’s still not worth it for healthy people to get their genomes sequenced. Within 20 years, the price will get low enough and the medical utility will get high enough to change that.

Paper-thin, ultra-high-res display screens will be in common use. Computer monitors and TV’s with these qualities are shown throughout the film. Many of them are also integrated into translucent glass, so clear windows can also serve as touchscreens. This will be a very old, mature technology by 2093.

A set of display interfaces

Wall-sized display monitors will be common. Early in Prometheus, there’s a scene where David is watching a film on a TV screen that covers an entire wall of a room in the space ship. This should be very old technology by 2093, and given current trends, floor-to-ceiling TVs will become available to average-income Americans in the 2030s. Since standard-sized doorways are too small to fit enormous TVs through them, the TVs will also need to be paper-thin and rollable into tubes, or capable of being assembled from a grid of many smaller pieces.

David watching “Lawrence of Arabia” on a wall-sized TV

Suspended animation pods will exist. During the multi-year space journey from Earth to the alien planet where the film’s events happen, the human crew members are kept in a state of suspended animation in coffin-sized pods. The mechanism through which their physiological functions are suspended (i.e. – Deep cold? Preservative fluids injected into their bodies? Something else?) is never made clear, but one crew member is shown to be dreaming in her pod, indicating that her brain is still active, and by necessity, her metabolism (even if it is dramatically slowed). That being the case, the “hypersleep” depicted in Prometheus is fundamentally different from today’s human preservation methods, which involve freezing dead people whose biochemical and brain activity have ceased in liquid nitrogen.

Frankly, I can’t say whether suspended animation will exist in 2093 because there isn’t any trendline for the technology like Moore’s Law that I can put on a graph and extrapolate. The best I can do is to note that our ability to preserve human organs meant for transplantation is improving as time passes, we do not appear to be close to the limit of what is scientifically possible, credible scientists have proposed ways to improve the relevant technologies, and whole-body human cryopreservation and revival is theoretically possible.

Machines will be able to read human thoughts and create digital representations of those thoughts that other people can watch. At the start of the movie, the Prometheus is still en route to the alien planet, all of the humans are in cryosleep pods, and David the android is the only crew member awake. During the montage that shows how he spends his time as the ship’s custodian, he takes a moment to check on the status of a female member of the crew. David puts a virtual reality visioning device on his face, and through it he is able to see a dream that the person is having at that moment, as if he were watching live-action film footage. I think this technology will exist by 2093, but its capabilities will be more limited than shown in the film.

Human thought is not a magical phenomenon; it happens thanks to biochemical and bioelectric events happening inside of our brains. Currently, we don’t understand the linkages between specific patterns of brain activity and specific thoughts, and our technologies for monitoring brain activity are coarse, but there’s no reason to assume both won’t improve until we have machines that can decipher thoughts from brain activity. To quote Microsoft Co-Founder Paul Allen, “An adult brain is a finite thing, so its basic workings can ultimately be known through sustained human effort.”

Unlike faster than light space travel, mind reading machines don’t violate any laws of physics, nor is there reason to believe the machines would require impractically large amounts of energy. In fact, crude versions of the technology have already been built in labs using fMRI machines and brain implants. In all cases, the machines first recorded the participants’ brain activity during training sessions where the humans were made to do scripted physical or mental tasks. The machines learned which patterns of brain activity correlated with which human thoughts or physical actions, enabling them to do things like decipher simple sentences the humans were thinking of with high accuracy. In other lab experiments of this nature, physically disabled people were able to command robot arms to move around and grab things by thought alone.

However, I think the accuracy of mind reading machines will be hampered by the fundamentally messy, plastic nature of the human mind. Scientists commonly refer to the human brain as an example of “wetware” due to its fusion of its hardware and software, and to its ever-shifting network of internal connections. As a result, if I close my eyes and try to envision an apple, there will be a discrete pattern of brain activity. If I do this again in a few minutes, the activity pattern will be slightly different. Contrast this with a computer, where the image of an apple exists as a discrete software file that never changes. Because of this, even if a brain scanning machine had perfect, real-time information about all brain activity, its interpretation of what the activity meant would always have some margin of error.

The cinematic dream footage that David sees in virtual reality.

Returning to the movie’s specific depiction of mind reading technology, let me add that if we could see the same mental images that a person sees while dreaming, I doubt they would look sharp or well-detailed, or that the sequence of events would follow a logical order for more than a few seconds before the dream transformed into something different. It would be like watching a fuzzy, low-resolution art film comprised of disjointed images and sounds, occasionally peaking in intensity and coherence enough for you to discern something of meaning, before dissolving into the equivalent of human brain “static.” So while it’s plausible that, in 2093, you could use machines to read someone else’s thoughts, I think the output you would see would be much less accurate and less detailed than it was in Prometheus.

There will be small, flying drones that can do many things autonomously, like mapping places and finding organic life. After landing on the alien planet, the crew of the Prometheus travels overland to a mysterious alien structure and goes inside. The interior is a long series of dark, twisting corridors and strange rooms. To speed up their exploration, one crewman releases two volleyball-sized flying drones, which zip down the corridors while beaming red, contorting lasers at everything. As they float along, the drones transmit live data back to the Prometheus that is compiled to build a 3D volumetric map of the alien structure’s interior spaces.

Simpler examples of this technology already exist and are used for mapping, farming and forestry (one of many commercial examples is “Drone Deploy” https://youtu.be/SATijfXnshg; another is “Elios,” which is enmeshed in a spherical cage as protection against collisions in tight spaces). Sensor miniaturization, better motors and batteries, better AI, and cost reductions to every type of technology will allow us to build scanning drones that are almost identical to those in the movie decades before 2093. The only parts of the movie’s depiction I disagree with are 1) the use of red lasers for sensing (passive sensors and LIDAR beams that are invisible to human eyes are likelier) and 2) the use of some type of magical antigravity technology to fly (recognizable means of propulsion like spinning rotors and directed jets of exhaust will probably still be in use, though they will be smaller but more powerful thanks to improved technology). Small, cheap, highly versatile flying drones will have enormous implications for mass surveillance, espionage, environmental monitoring, and warfare.

There will be 3D volumetric displays. The bridge of the Prometheus has a large table that can project detailed, 3D volumetric images above it. The crew uses it to view an architectural diagram of the alien structure they find on the planet.  Crude versions of this technology already exist, and can make simple images that float in midair by focusing laser beams on discrete points in space called “voxels” (volumetric pixels) heating them to such high temperatures that they turn the air into glowing plasma. If enough voxels are simultaneously illuminated, 3D objects can be constructed in the same way that pixels on a digital watch face can arrange into numbers if lit up in the right sequence.

Volumetric display of the alien complex, 2093

Today’s volumetric displays produce ozone gas and excessive noise thanks to air ionization, but it’s plausible the problems could be solved or at least greatly reduced by 2093. For certain applications, the displays would be very useful, though I think holographic displays (i.e. – a flat screen TV doesn’t make voxels but uses other techniques to fool your eye into thinking its images are popping out of the screen) and virtual reality glasses will fulfill the same niche, possibly at lower cost. Intelligent machines might also be so advanced that they won’t need to look at volumetric displays to grasp spatial relationships as humans have to.

State of the art volumetric display, 2011

Some disabled people and old people will use powered exoskeletons instead of wheelchairs.  The space mission depicted in the film is funded by an elderly tech tycoon named “Peter Weyland.” Unbeknownst to most of the crew, he secretly embarked with them from Earth, and is sleeping in a suspended animation pod in a locked room while the first 3/4 of the film’s events unfold. At that point, David awakens him, and it is revealed to the surviving crewmen that Weyland supported the mission in the hopes that the aliens would give him a cure for his own mortality. They get into their space suits for a final trip to the alien structure, and Weyland’s outfit includes a light, powered exoskeleton for his lower body, which allows him to walk much faster than he normally could given his age.

Weyland, right, is wearing an articulated exoskeleton around his legs and lower back.

Exoskeletons for the disabled and the elderly already exist, a recent example being the “Phoenix” unit made by the “suitX” company. Unfortunately, Phoenix is $40,000 (a typical electric wheelchair is only $2,000) and requires a somewhat heavy battery backpack. I suspect that Phoenix’ high cost is due to patents and R&D costs being amortized over a small production run,  and that the physical materials the suits are made of are not expensive or exotic. Prices for Phoenix-like exoskeletons will only decline as relevant patents expire, copycats arise, and batteries get lighter and cheaper. It’s hard to see how these kinds of exoskeletons won’t be ubiquitous among mobility-impaired people by 2093 (as electric wheelchairs are today), if not decades before.

That being said, I don’t think they’ll make electric wheelchairs completely obsolete because some disabled and old people will find it too physically taxing to stand upright, even if supported by a prosthesis. Some users might also find it too time-consuming to put on and take off exoskeletons each day (note the large number of straps in the photo below).

The Phoenix exoskeleton

There will be lots of 100+ year old people. Piggybacking off the last point, Mr. Weyland is 103 years old, though since he spent the space journey in suspended animation, his aging process was probably slowed down, making his “biological age” slightly lower than his chronological age. Though living 100 years has a kind of mythic aura, it’s actually only a little higher than the current life expectancy in rich countries, and, making conservative assumptions about future improvements to healthcare, living to 100 will probably be common in 2093 (doing the math, you could someday be in this group).

Today, a wealthy white male who is diligent about his diet and exercise (as Weyland probably had been throughout his life) can expect to live to about 90. In fact, that’s a low estimate since it assumes the state of medical technology will stay fixed at 2017 levels for his entire life. In reality, we’re certain to develop new medicines, prostheses, and therapies that extend lifespan farther between now and 2093. A 10 year bump to average life expectancy in the next 76 years–which would put Weyland over the century mark–is entirely possible, and note that U.S. life expectancy actually grew more than that in the 76 years preceding 2017, so there’s recent historical precedent for lifespan increases of this magnitude.

In 2093, “100 will be the new 80,” and indefinite extensions to human lifespan might even be on the horizon.

What was missing from the movie’s depiction of 2093:

  • The fusion of man and machine. Where were the Google glasses? Google contact lenses? Google eye implants? Google brain implants? Go-Go Gadget Legs? (Bionic limbs) By 2093, it will be common for humans to have wearable and body-implanted advanced technologies.
  • Not enough automation and robots on the space ship. Computers and machines will doing way more of the work, reducing the need for resource-hogging humans.

Links

  1. https://www.nytimes.com/2015/05/15/health/new-way-to-ensure-accuracy-of-dna-tests-us-announces.html
  2. Holovect volumetric display: https://youtu.be/kPW7ffUr81g
  3. Fairy Light volumetric display: https://youtu.be/AoWi10YVmfE
  4. https://www.digitaltrends.com/cool-tech/ai-predicts-what-youre-thinking/
  5. http://www.cnn.com/2017/03/01/health/freezing-organ-donation-nanoparticle-warming-study/index.html
  6. https://www.technologyreview.com/s/546276/this-40000-robotic-exoskeleton-lets-the-paralyzed-walk/
  7. http://www.cnn.com/2016/01/25/health/centenarians-increase/index.html

Roundup of interesting internet articles, September 2017 edition

Sorry about my long absence, but I promise more blog entries are coming. In the meantime…

  1. High-tech solutions to global poverty still aren’t substitutes for basic infrastructure, good government, property rights, and cultures of trust. Here’s one recent article about it and two older ones:
    https://qz.com/1090693/zipline-drones-in-africa-like-rwanda-and-tanzania-have-an-opportunity-cost/
    https://www.foreignaffairs.com/articles/2016-08-30/debunking-microenergy
    https://www.economist.com/blogs/freeexchange/2016/08/bot-we-trust
  2. GE is working on robots the sizes of small animals and insects that can crawl around inside jet turbines for inspections, and maybe for repairs as well in the future. Are we headed for a future where things never break down?
    https://www.economist.com/news/science-and-technology/21729737-robotic-mechanics-can-go-anywhere-tiny-robots-will-inspect-and-fix-jet-engines
  3. ‘Professor Simon Blackmore, head of engineering, argues that an even bigger benefit could be in providing fleets of small, light robots, perhaps aided by drones, to replace vast and heavy tractors that plough the land mainly to undo the damage done by soil compaction caused by . . . vast and heavy tractors. Robot tractors could be smaller mainly because they don’t have to justify the wages of a driver, and they could work all night, and in co-ordinated platoons.’
    http://www.rationaloptimist.com/blog/robot-farm-machinery/
  4. If machines take all of our jobs and do them better and faster than we can, then it could portend a world where billions of unemployed humans spend their days in hyperrealistic virtual reality games engineered by machines.
    https://youtu.be/jOOB9Q1Nj8Y
    https://www.economist.com/blogs/economist-explains/2017/03/economist-explains-24
  5. Many of the action scenes in the superhero movie Logan were done using incredibly lifelike CGI simulacra of the actors. Will actors someday make money by licensing the use of their digital likenesses in movies instead of physically starring in them?
    https://youtu.be/TxWu5Brx_As
  6. I definitely agree with this. I think Elon Musk’s statements about AI and other things are part of a deliberate strategy to keep the public’s attention focused on him. As a businessman dependent upon the faith of his investors to keep his enterprises afloat, he needs to constantly stay in the spotlight and to project an image of being smarter than everyone else to keep the dollars flowing.
    https://www.bloomberg.com/news/articles/2017-09-19/google-s-ai-boss-blasts-musk-s-scare-tactics-on-machine-takeover
  7. Per my previous blog entry, being able to quickly replace 100,000 cars destroyed by a hurricane is a respectable feat, but it would be better to find a way to keep the 100,000 cars from being destroyed at all.
    http://www.npr.org/2017/09/25/553475557/rental-firms-disaster-readiness-may-help-usher-the-age-of-self-driving-cars
  8. Computers make weird mistakes in some object recognition tasks, but so do humans.
    http://www.kurzweilai.net/human-vs-deep-neural-network-performance-in-object-recognition
  9. ‘Distributed ledgers are useful technology, just like banks. As they become a larger part of finance, the temptation to abuse them will be just as great. History instructs that no governance is perfect, and humans are reliably awful.’
    https://www.economist.com/blogs/freeexchange/2017/09/not-so-novel
  10. Our cells are full of organic nanomachines which support our most basic life functions, and since Richard Feynman’s 1959 lecture on the subject, it has been recognized that this was proof of concept that fully synthetic nanomachines were also feasible. Yet only recently have scientists managed to build crude but functional nanomachines in labs.
    http://blogs.sciencemag.org/pipeline/archives/2017/09/25/building-our-own-molecular-machines
  11. Don’t get your hopes up about Amazon flying drone package delivery: there are legal liability issues with packages accidentally dropping on people’s heads, and major noise issues. Flying cars would be handicapped by the same problems. Fortunately, there’s still a lot of room for improving the efficiency of ground transit with technology.
    https://qz.com/1085214/google-moonshot-lab-cofounder-sebastian-thrun-talks-flying-cars-automated-teaching-and-an-ai-arms-race-with-china/
  12. A useful quote to remember when contemplating flying cars: ‘Flying machines are inherently more complicated to operate than ground vehicles, and the consequences of error or malfunction are much greater—because of gravity.’
    https://warisboring.com/u-s-marines-portable-helicopters-were-too-crazy-to-survive/
  13. And in typical form, McKinsey beats this issue to death: ‘Drones require good weather and are now limited to loads of 7.5 kilograms or less and a route of 15 to 20 kilometers. Infrastructure that will support commercial delivery is lacking, and concerns about theft, hacking, crashes, and privacy worry consumers. Finally, drones need a minimum of about two square meters to land, more than many urban households can offer.’
    https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/urban-commercial-transport-and-the-future-of-mobility
  14. Would aliens 10,000 more advanced than humans have electric motors that are any better than ours? Would they have better mousetraps as well?
    https://www.economist.com/news/science-and-technology/21728888-better-motors-go-better-batteries-electric-motors-improve-more-things
  15. Seeing as how so many people vote on the basis of falsehoods, prejudice, or party affiliation and commonly vote against their own self-interests without realizing it, might democracy benefit if machines tried to reason with voters one-on-one before elections?
    http://www.bbc.com/news/uk-politics-40860937
  16. Disreputable peer-reviewed scientific journals are an even bigger problem than thought. Some of the junk papers are written by NIH-funded scientists and by scientists working at prestigious universities like Harvard.
    http://www.nature.com/news/stop-this-waste-of-people-animals-and-money-1.22554
  17. Anytime you’re down on the U.S. Big Pharma industry, consider the massive fraud that exists within China’s equivalent. (Russia is just as bad.)
    http://www.rfa.org/english/news/china/clinical-fakes-09272016141438.html
  18. Your month of birth determines a surprising amount about your academic performance, all the way to college.
    https://www.utoronto.ca/news/oldest-kids-class-do-better-even-university-u-t-study
  19. Birth month also affects your odds of becoming an athlete, thanks to the same cutoff date effect.
    http://www.bbc.com/sport/olympics/18891749
  20. An important counterpoint to the growing anti-Vaxx movement is this: Teen vaccination rates for HPV are now over 50% and rising. The vaccine actually prevents several types of cancer.
    https://mobile.nytimes.com/2017/09/22/health/hpv-vaccine-teenagers.html
  21. Chinese scientists have edited the genomes of human embryos to fix single-point DNA mutations (yes, this appeared in a peer-reviewed journal).
    http://www.bbc.com/news/health-41386849
  22. One more experiment finished showing that humans could bear the psychological stresses of a years-long Mars mission. Now about that space radiation problem…
    https://www.space.com/38180-hi-seas-8-month-mars-simulation-ends.html
  23. Two years ago, Russia and Turkey were at each other’s throats over the latter’s shootdown of the former’s attack plane, and there was talk of all NATO being dragged into war over it. Recently, Turkey turned it back on the the alliance to buy an advanced antiaircraft system from Russia.
    https://www.nytimes.com/2017/09/12/world/europe/turkey-russia-missile-deal.html
  24. The U.S. Army’s first upgraded Stryker rolled off the assembly line.
    http://www.janes.com/article/74356/first-us-army-upgraded-stryker-dvh-rolls-through-production